

Zend Framework 1.8
Web Application Development

Design, develop, and deploy feature-rich PHP web
applications with this MVC framework

Keith Pope

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Zend Framework 1.8 Web Application Development

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2009

Production Reference: 1160909

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-22-0

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Credits

Author
Keith Pope

Reviewers
Wenbert Del Rosario

Md. Mahmud Ahsan

Acquisition Editor
Rashmi Phadnis

Development Editor
Ved Prakash Jha

Technical Editor
Pallavi Kachare

Copy Editor
Leonard D'Silva

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Lata Basantani

Project Coordinator
Rajashree Hamine

Proofreader
Lynda Sliwosk

Jeff Orloff

Graphics
Nilesh Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

About the Author

Keith Pope has over ten years of experience in web-related industries and has
had a keen interest in programming from an early age. Keith currently works in the
airline industry as a technical project manager, providing entertainment systems
for aircraft.

He has been working with the Zend Framework since its first preview release, using
it in many of his work and personal projects.

I would like to thank my wife; without her support and patience,
this book would not have been possible. I would also like to thank
Matthew Weier O'Phinney who has been instrumental in the success
of the Zend Framework project as well as giving lots of time to
the mailing lists, answering both mine and others questions. The
rest of the Zend team for all their hard work while creating a great
framework that I could write about. Rob Allen and Alex Mace for
general help and support. The technical reviewers and the team at
Packt for their hard work in getting everything together. Derek Au
for his bug reports. Big thanks to my family, the Adkins family, Phil
Dunsford, Martin Williams, Tom Hoddell, Sally Hoddell, the Allpay
team, Francesca Oliveri, Lucy Hughes-Martin, and Rob Whittle; you
all supported me in various ways.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

About the Reviewers

Wenbert Del Rosario is from Cebu, Philippines. He started his career as a
web developer in college, learning PHP and Adobe Photoshop. He works with
open source technologies—Zend Framework, Code Igniter, MySQL, and jQuery
are some of the tools he has under his sleeve.

He likes to keep it simple and believes that being mindful of best practices in
software development can be more effective than adopting every latest technology.

In his free time, he loves to work on personal projects using PHP, Javascript, and
MySQL. He also does some freelance jobs and consulting from time to time.

All in all, he is very passionate about what he does and is a big fan of open
source software.

Wenbert has worked for Lexmark Research and Development Corporation in Cebu.
He develops in-house web-based applications using Apache, PHP, MySQL, and
Linux. Some of his web applications are used in different geographc regions
(USA, Europe, and Asia Pacific) by Lexmark employees, while other small but
significant ones are used locally by Lexmark Cebu employees.

I would like to thank my family. My mother, Wenia, who is always
very supportive and understanding. My brothers, Andrew, John,
and Alberto. And my sister Jonina Mae. To my father, Luis, who
passed away a few years ago and to God.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Md. Mahmud Ahsan is a freelance consultant currently working as a software
engineer in Berkeley-based i2we, inc.

Mahmud received a Bachelor's degree in Computer Science and Engineering from
the International Islamic University Chittagong, in Bangladesh. He is also a Zend
Certified Engineer. He has about four years of experience in the world of PHP. He
has extensively worked on small and large scale social networking web applications
developed in PHP and Zend Framework.

I'm grateful to my parents and Hasin Hayder (author at Packt
Publishing). I would also like to thank my wife Jinat Jahan for her
consistent support.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents
Preface 1
Chapter 1: Creating a Basic MVC Application 9

Overview of MVC architecture 10
Setting up the environment 10
Installation 11
Creating the project structure 11
Application directory structure 13
Bootstrapping 14

The index file 14
Application configuration 16
The bootstrap file 17

Your first controller 18
The Action Controller 19

Subclassing 19
Initialization 20
Actions 21
The standard router 24
Utility methods 27
Action Helpers 29

Your first view 30
View directories 31
Creating a view 31
View Helpers 35

URL View Helper 35
View customization 37

Handling errors 38
Summary 40

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[ii]

Chapter 2: The Zend Framework MVC Architecture 41
Zend framework MVC overview 41

What is a request 42
Request handling 42
Abstractness of MVC components 45

The Front Controller 45
Design 45
Defaults 46
Using the Front Controller 47

Invocation parameters 47
Options 48
Modules, controllers, and actions 48
MVC component customization 51
Plugins 52

The router 53
Design 54
Defaults 54
Using the router 55

Zend_Controller_Router_Route 56
Zend_Controller_Router_Route_Static 59
Zend_Controller_Router_Route_Regex 59
Zend_Controller_Router_Route_Hostname 63
Zend_Controller_Router_Route_Chain 64
Zend_Config 65

The Dispatcher 67
Design 67
Request dispatching 67
Using the Dispatcher 69

The Request object 70
Design 71
Defaults 71
Using the Request object 71

The HTTP Request object 73
The Response object 75

Design 75
Defaults 76
Using the Response object 76

Summary 80
Chapter 3: Storefront Basic Setup 81

Getting started 81
Software requirements 82
Coding standards 82

The Storefront requirements 82

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[iii]

The Storefront overview 83
Basic structure and setup 83

The directory structure 84
Bootstrapping with Zend_Application 85

Zend_Application basics 85
Bootstrapping the storefront 86
Zend_Application configuration 88
The bootstrap class 94
Creating the bootstrap resources 96
Bootstrapping complete 100

The basic layout 100
A little task for you 102

Building the Storefront 102
The Storefront database 104

Database installation 104
Product table 105
ProductImage table 106
Category table 106
The user table 107

Introducing Zend_Db 107
Adding Zend_Db to the Storefront 108

Logging and debugging 108
Zend_Debug 109
Zend_Log 109

Adding Zend_Log to the Storefront 109
Using the logger 111
Database profiling with Zend_Log 113

Summary 114
Chapter 4: Storefront Models 115

Models in the Zend Framework 115
Model design 116

The application stack 116
Fat Model Skinny Controller 117

Fat Controller 117
Fat Model 118

Model design strategies 120
Direct inheritance 120
Has-a relationship (composition) 122
Domain Model 123

Further reading 124
Storefront Models 125

Model Resources 125
Managing Model Resources 126
Model Resource data sources 126

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[iv]

Model Resource Items 127
Resource Item business logic 127

Loading Models and Resources 129
Zend_Loader_Autoloader_Resource 129

Resource Autoloading 129
The SF Library 131
Summary 132

Chapter 5: Implementing the Catalog 133
Getting started 133
Creating the Catalog Model and Resources 134

Catalog model skeleton 134
Naming conventions 135
Catalog methods 136

Catalog Model Resources 137
Zend_Db_Table 138
Model Resource Items 140

Implementing the Catalog Model 143
Model Resource interfaces 143
Model Resource implementation 146

Catalog Model 156
Loading Models and other assets 160

Configuring the Autoloader 160
The Zend_Db_Table bug 162

Creating the Catalog Controllers 163
CategoryController 163

Action Stack Front Controller Plugin 164
CatalogController 167
Storefront routes 170

Creating the Catalog Views 172
Category views 172
Catalog views 173
Catalog View Helpers 175

View Helper creation 176
Creating the Catalog View Helpers 177

Building and running the storefront 180
Summary 182

Chapter 6: Implementing User Accounts 183
Creating the user model and resources 183

User model 184
User Model Resources 188

Creating the Customer Controller 190
Zend_Form 194

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[v]

Basic forms 194
What is a Form? 195
Creating a Form 196

Customizing Zend_Form's output 198
The Decorator pattern 198
Zend_Form's Decorators 200
Fixing the login forms HTML 202

The User forms 204
A Typical Form element 207
Custom validators 208
Base form decorators 212
Specializing forms 213

Creating the Customer Views 215
Building the application 215
Summary 215

Chapter 7: The Shopping Cart 217
Creating the Cart Model and Resources 217

Cart Model 217
Cart Model interfaces 220
Cart Model implementation 221

Cart Model Resources 224
Shipping Model 225

Creating the Cart Controller 226
Creating the Cart Views and Forms 228

Cart forms 228
Add form 228
Table form 230
SF_Form_Abstract 231

Cart View Helper 233
Cart View scripts 236

Cart view.phtml 237
Cart _cart.phtml 237
Layout main.phtml 239
Catalog index.phtml 240
Catalog view.phtml 240

Summary 241
Chapter 8: Authentication and Authorization 243

Authentication versus Authorization 243
Authentication with Zend_Auth 244

Zend_Auth 244
Authentication adapters 244
Authentication results 244
Identity persistence 245

Authentication Service 245

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[vi]

Customer Controller 249
Authentication View Helper 250
Other Authentication Service elements 251

Authorization with Zend_Acl 252
Zend_Acl introduction 252
ACL in MVC 253

Using a centralized global ACL 254
Using module specific ACL's 254
ACL in the Domain layer 255

Model based ACL 255
The Storefront ACL 256
The Storefront roles 257
The Storefront resources 258
The new base model 259
Securing the User Model 261

Non-Model ACL 263
Unit testing with ACL 264

Summary 266
Chapter 9: The Administration Area 267

What is an administration area? 267
Implementation options 267

Implementing the storefront administration area 268
Admin Route 269
Admin context Front Controller plugin 270
Admin layout 271
Admin controller 273

Catalog management 273
Adding products 274

Product add form 275
Catalog Model 280
Catalog Controller 281

Securing the administration area 282
ACL action helper 283

Securing the Admin functions 286
Catalog Model ACL 286

Summary 288
Chapter 10: Storefront Roundup 289

Using multiple modules 289
Setup 289
Configuring Zend_Application 290
Bootstrapping modules 290
Module specific configuration 293

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[vii]

Sharing common elements 293
Services 295

Services for cross module communication 295
Services for extending model behavior 299

Summary 300
Chapter 11: Storefront Optimization 301

General optimizations 301
Opcode caching 301
Path optimizations 302
Requires and includes 303
Standard caches 304

Plugin loader cache 305
Db table cache 306

Dispatching optimizations 308
Caching 310

Zend_Cache 311
Model data caching 313

Basic class caching 313
Model cache integration 314

Summary 322
Chapter 12: Testing the Storefront 323

What is testing? 323
PHPUnit and Zend_Test setup 324

PHPUnit setup 325
Zend_Test setup 327
Handling the database 329

Writing tests 330
Running tests 331

Adding tests to the build 332
Testing the Customer Controller 335

Running the Customer Controller test 338
Common problems 339
Summary 339

Appendix: Installing Supporting Software 341
Installing PHPUnit 341
Installing Xdebug 342

Windows installation 342
Linux based installation 342
OSX Installation 342
Configuration 343

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Table of Contents

[viii]

Installing Apache Ant 343
Windows installation 343
Linux installation 344

Index 345

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface
As web developers we are always looking for ways to improve our systems and
working practices. We have to move fast and handle ever-changing requirements from
our managers, although this is what makes our work so exciting and challenging.

A very important tool that can meet today's fast-changing needs is the basic
framework you use to build your application. This forms the basis of your
application, and if you have a good framework then you should have fewer
problems in the future.

A good example is Ruby on Rails, a very popular and successful framework. It has
certainly gone a long way in popularizing the use of frameworks, especially in the
PHP community, with a lot of PHP developers choosing to switch to Ruby. Why?
Well Ruby on Rails will provide you with a lot of very good tools and I can see why
people are drawn to it. But the PHP communities are never ones to sit around and
since the release of PHP5 there has been a surge of new PHP5 frameworks released.

So with all these frameworks what's the best? Well, if you bought this book you
have probably already chosen to use the Zend Framework. But I would say use
whatever tool fits your project best. All the frameworks out there have good and bad
points; it is up to you as a web developer to assess your needs and choose your tools.

Brief history and future developments
The Zend Framework was first announced at ZendCon in October 2005 as part
of Zend's industry-wide PHP Collaboration Project. Its main aim was to provide
a standardized way to build PHP applications and to assist in rapid application
development using PHP.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[2]

The first production version was released in July 2007, and included many great
features such as the MVC framework, database access, Lucene search engine,
I18N support, authentication, authorization, and web service interfaces. The PHP
community warmly welcomed this and the framework gained interest from
many quarters.

Following on from version 1.0 the framework has grown rapidly, and has a
large active community. Backed by a determined group of core contributors, the
framework is in great shape and will continue to grow.

As of this writing, the current version is 1.5.3 and the core components are at a
mature stable state. Future developments are promising to add many productivity
features as well as improving on the already solid set of core features. One feature
to note is the introduction of tooling components; these will provide new ways of
managing projects and will also be able to integrate into some popular IDE's.

With their future plans and already excellent base, the Zend Framework is looking to
be one of the major players in the PHP framework market.

What is it and why use it
Now that we know a bit about the Zend Framework, let's look at exactly what it can
be used for.

The Zend Framework is a loosely-coupled collection of components; this means that
you can use all of them or just one, enabling greater flexibility. For example, you may
need to add OpenID support to one of your currently deployed applications. With
Zend Framework, you can simply use the Zend_OpenID component without having
to use the MVC functionality or any configuration files that are not concerned with
OpenID. You could compare this type of modular design to PHP's PEAR library.

On the other side, Zend Framework is a fully functional MVC framework, meaning
that it provides us with the tools to implement the Model View Controller design
pattern. This design pattern is widely used in web development and provides a
way for us to separate our applications business logic, flow of control, and display.
The purpose of this is to make applications easier to maintain, and enables many
developers to work on a project in isolation. This book is mainly focused on showing
you how to use this functionality.

There are a few things that you should know about the Zend Framework. It is not a
content management solution. It does not provide components like menu creators or
user management areas. All that it provides are the tools for you to build these.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[3]

So we can use this framework as both an MVC framework or as a component library,
but why would you choose to use it? Here are some of the main benefits that Zend
Framework offers.

Licensing
Licensing is always a consideration when working with open source products.
The Zend Frameworks license is based upon the new BSD license and also has a
Contributor License Agreement (CLA) that all contributors sign before submitting
code. This means that Zend Framework is safe for your business to use without
worrying about the legal nightmares in the future.

Quality
From its initial conception, quality has been important to this framework. All code
is thoroughly unit tested and has to meet at least 80 percent code coverage with
100 percent as the aim. This means you shouldn't get any nasty surprises down the
line. Another important quality control is the proposal process. This process is very
rigorous meaning that the Zend Framework is less likely to suffer from bloat in
the future.

Simplicity
One of the important principles in the Zend Frameworks design is the 80/20 rule.
This stipulates that each component should provide 80 percent of functionality that
meets the majority of use-cases and the other 20 percent is left for your business
specific requirements. By using this rule, Zend Framework provides a very simple
way for developers to get on and implement their own requirements.

Flexibility
Zend Framework is very flexible. Whether you want to refactor an old application,
create a new one, use a single component, or deviate from the common use-cases,
Zend Framework provides many ways for you to extend and customize your
application. This is achieved by its loosely-coupled design and its use of
Object-Oriented practices.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[4]

Out-of-the-box features
There is a whole host of out-of-the-box features for you to choose from. These
range from Google API support to input validation and filtering. Some of the
most notable are:

• Model View Controller
•	 Authentication and Authorization
•	 Database Abstraction
•	 Session Management
•	 Search and Indexing
•	 Web Services
•	 Mail and Mime Support

There are plenty of others, far too many to list them all. Just having a look at the
online reference guide shows you that Zend Framework is guaranteed to provide
most of the tools you need. Also with a constant stream of new proposals coming
out of the community you can be sure that it will stay ahead of the curve.

Community
All open source projects need a good community to survive. The Zend Framework
community is active and more importantly, friendly. The mailing lists are always
busy and people are very helpful to newcomers and seasoned users. Also the Zend
staffers are very supportive and committed to the success of the project. I would
suggest signing up to the mailing list to stay up-to-date with current developments,
and the ongoing debates, which are always interesting.

What this book covers
Chapter 1: A Basic MVC Application gives a quick-start introduction about building a
basic MVC application.

Chapter 2: The Zend Framework MVC Architecture gives a detailed look at all the MVC
related Zend Framework components.

Chapter 3: Storefront Basic Setup helps in creating the foundation from which the
Storefront will be created.

Chapter 4: Storefront Models provides a look at how Models are handled in the Zend
Framework, their design, and related issues.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[5]

Chapter 5: Implementing the Storefront Catalog helps in creating the Storefront
Catalog's Model, Controller, and Views.

Chapter 6: Implementing the Storefront User Accounts shows how to create the
Storefront User Model, Controller, and Views.

Chapter 7: Implementing the Shopping Cart helps in creating the shopping cart Model,
Controller, and Views.

Chapter 8: Implementing the Administration Area helps in creating functionality to
administer the Storefront products.

Chapter 9: Implementing Authentication and Access Control explains how to secure the
Storefront using Authentication and Access Control.

Chapter 10: Storefront Roundup explains how to use multiple modules and Services
within your application.

Chapter 11: Storefront Optimization explains optimizing of the Storefront to improve
application performance.

Chapter 12: Testing with Storefront explains the testing of the Storefront with Zend_
Test and PHPUnit.

Appendix: Installing Supporting Software explains how to install various supporting
software tools to help work with the Zend Framework on various platforms.

Who this book is for
This book is for PHP web developers who want to get started with Zend Framework.
If you are already using this framework, you will learn how to use it in the best way
and produce better applications.

Basic knowledge of Object Oriented design will be helpful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In order to fetch an instance of the Front
Controller, we use the getInstance() method."

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[6]

A block of code is set as follows:

$front->setControllerDirectory(array(
 'default' => '/path/application/default',
 'product' => '/path/application/product'
));

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

$route = new Zend_Controller_Router_Route_Hostname(
 ':username.domain.com',
 array(
 'controller' => 'account',
 'action' => 'index'
),
 array(
 // Match subdomain excluding www.
 'username' => '(?!.*www)[a-zA-Z-_0-9]+'
)
);

Any command-line input or output is written as follows:

bin\zf.bat create project.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "A request
is made and the Request Object is created."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[7]

To send us general feedback, simply send an email to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/4220_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake
in the text or the code—we would be grateful if you would report this to us. By
doing so, you can save other readers from frustration, and help us to improve
subsequent versions of this book. If you find any errata, please report them by
visiting http://www.packtpub.com/support, selecting your book, clicking on
the let us know link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata added to any list of
existing errata. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we can
pursue a remedy.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Preface

[8]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic
MVC Application

In this chapter, we will take our first steps into using the Zend Framework. This
provides us with a very quick run-through of using the Model-View-Controller
(MVC) components by creating a simple web page. We will look at the
following aspects:

What MVC is
Setting up your environment
Installing Zend Framework
Creating a Project with Zend_Tool
Bootstrapping and Configuration
Creating Controllers
Creating Views
Handling Errors

By the end of this chapter, you should be comfortable with the general concepts and
be ready to move on to creating more advanced functionalities.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[10]

Overview of MVC architecture
As we are going to be using MVC extensively throughout this book, it is important
that you have an understanding of what MVC is and what its goals are.

Trygve Reenskaug first devised MVC in the late 1970s for Smalltalk. Since then, it
has evolved and has many different implementations, and much debate surrounds
them. Even with the great amount of debate surrounding MVC, it still retains
its basic goal of separating user interface code into three separate areas. This
basic concept is fairly easy to understand. However, the details of an MVC
implementation can be very complex.

The three areas that MVC defines are Model, View, and Controller. These are
responsible for domain logic, user interface, and control logic respectively. By
separating application responsibilities in this way, we gain the following benefits:

The addition, editing, and removal of interfaces is simple
The ability to have multiple separate views of the same data
Changes made to the logic control are easy
Helps developers avoid repeating common code
Helps developers to work together in segregation

There are, of course, disadvantages to MVC and situations where it should not be
used. For example, the application we are about to create is very simple. Therefore,
if it always stays this way, then there would be no point in using MVC, as the
overhead created by the MVC implementation outweighs the benefit.

We will be looking at how the Zend Framework implements MVC in Chapter 2.
For now, we will stick with this brief explanation of what MVC is and move on
to creating our Hello Zend application. I hope this gives you an idea of the main
aspects involved and the benefits you can get by using it.

Setting up the environment
First, we need to set up our environment and get a copy of the Zend Framework.

You can download the source package from http://framework.zend.com/
download. For the purposes of the book, get version 1.8.0.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[11]

You may also wish to familiarize yourself with the projects Subversion
repository. This is useful if you want to use any functionality that is
still in development. Information on the Subversion layout can be
found at http://framework.zend.com/wiki/display/ZFDEV/
Subversion+Standards.

The minimum PHP version to run the Zend Framework is 5.2.4; Redhat users
that are stuck at 5.1 should consider using Zend Server (http://www.zend.com/
products/server) to easily upgrade your PHP version.

For the examples in this book, you will also need a web server that has URL Rewrite
support such as Apache (http://httpd.apache.org/).

Installation
Once we have downloaded the Zend Framework release package, we need to do
some basic installation before we can start creating our application. First, create a
new directory within your web server's document root, from which the application
will be served. The examples in this chapter use the directory name of helloZend.
Next, copy the library and bin directories from the release package into the newly
created directory. The library directory contains all of the Zend Frameworks
source files, and the bin directory contains the command line interface for the
Zend Framework. The Zend Framework is now installed and ready for use!

Creating the project structure
We are now ready to start creating the directory structure for our project. In order
to do this, we are going to use the command line interface provided by the Zend
Framework. This interface uses the Zend_Tool component that provides a whole
host of commands that makes it very easy to get up and running with the Zend
Framework in just a few minutes.

In order to create the project structure, open up your command line and change into
the hellozend directory, and then run the following command:

For Windows users:

bin\zf.bat create project

For Linux and Mac users:

bin/zf.sh create project

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[12]

This command creates a Zend Framework project in the specified location. In our
case, this is the current directory (.). We could specify another location for our
project like this:

bin/zf.sh create project /my/other/path

When we run our create project command, Zend_Tool creates the basic application
skeleton for us. The output of the command should look something like this:

Zend_Tool not only creates directories, but it also creates some basic elements that
form a very basic MVC application for us. In order to see what it created, point your
web server to the newly created public folder within our hellozend directory.

For Apache users, a basic virtual hosts setting for this would be something like:

Listen 8080
<VirtualHost *:8080>
 DocumentRoot /Users/keithpope/Sites/hellozend/public
</VirtualHost>

Once you have your web server configured, open your browser and browse to the
hellozend site. In this case, it will be http://localhost:8080/. We should now
see the Zend Framework start page, as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[13]

Wow, that was easy wasn't it! We are now ready to start looking at what Zend_Tool
created and try out some of the basic Zend Framework features.

Application directory structure
When we create our project using Zend_Tool, it creates the basic directory structure
for us. If we open our hellozend directory, we can see the folders that are shown in
the following screenshot:

This structure has four main areas, application, library, public, and tests. These
directories are probably common to most Zend Framework applications, though
they may be named differently.

The application directory is responsible for holding our application-specific files
such as configs, models, controllers, and views.

Inside the application directory, we have our main MVC folders—controllers,
models, and views, which hold controller, model, and view files respectively. In
other Zend Framework applications, you may also see modules, which are used
to split controllers, models, and views into manageable groups. We will be using
modules later in our storefront application.

The library directory is responsible for holding our supporting classes such as the
Zend Framework components or our own components that do not come into the
scope of a model.

Inside the library directory, we have the Zend directory that contains the Zend
Framework source files.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[14]

The Zend directory
It is important to remember that you are not forced into placing the
Zend directory in the library folder. For example, if you use the Zend
Framework for multiple sites, then you can simply place it in a folder that
is part of your PHP include path. By doing this, you will have access to
the Zend Framework components in all PHP scripts.

The tests directory stores our tests for our application. We will be using this later
when we use PHPUnit to test the Storefront.

The public directory is responsible for holding all of our publicly accessible assets
such as images, CSS, and JavaScript.

Bootstrapping
Another aspect Zend_Tool took care of during installation is bootstrapping. This
refers to the process of application initialization where we configure, and startup, the
MVC process when someone requests a page. Zend_Tool did a lot for us here, so let's
break it down and see exactly what it did.

The index file
Inside the public directory, Zend_Tool created the file index.php, which is the
main entry point for all of the requests to our application. Inside this file we have
the following code:

public/index.php

<?php

// Define path to application directory
defined('APPLICATION_PATH')
 || define('APPLICATION_PATH', realpath(dirname(__FILE__) .
 '/../application'));

// Define application environment
defined('APPLICATION_ENV')
 || define('APPLICATION_ENV', (getenv('APPLICATION_ENV') ?
 getenv('APPLICATION_ENV') : 'production'));

// Ensure library/ is on include_path
set_include_path(implode(PATH_SEPARATOR, array(
 realpath(APPLICATION_PATH . '/../library'),
 get_include_path(),
)));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[15]

/** Zend_Application */
require_once 'Zend/Application.php';

// Create application, bootstrap, and run
$application = new Zend_Application(APPLICATION_ENV,
 APPLICATION_PATH . '/configs/application.ini');
$application->bootstrap()->run();

The index file is responsible for handling a user's request for a page of the
application. All requests to the application are routed through the index file. If
we look at what is happening within this file, then we see that the first code block
defines the constant APPLICATION_PATH. This constant defines the path to the
application directory. This is used throughout the application to access files
stored within that directory.

Next, we set the APPLICATION_ENV constant. This is used by the application to
change certain behaviors depending on how the application is being used. For
example, we may want full error messages in a development environment. However,
in a production environment, we may just want to log these messages and not
display them to the user. Also, notice that this code block uses the getenv() PHP
function that checks the system environment variables for the APPLICATION_ENV
constant. This is one way of easily setting the environment for our applications. We
will cover more on this later.

After our constants are set, we then configure PHP's include path for the Zend
Framework to function. The library folder must be on the include path so that the
component classes can be loaded.

After this, we initialize the application using Zend_Application. First, we include
the Zend_Application file, and then create a new instance of this class. When
instantiating Zend_Application, we pass the environment constant and the path
of the configuration file to its constructor. We then call the bootstrap() method
(which initializes the application) and the run() method (which starts the MVC
process). We will look at Zend_Application in detail later.

As we mentioned before, all requests are routed through the index file. In order to
make all requests do this, we need to configure Apache to rewrite all the requests to
index.php. In order to do this, Zend_Tool has created a .htaccess file for us inside
the public directory.

public/.htaccess

SetEnv APPLICATION_ENV development

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[16]

RewriteCond %{REQUEST_FILENAME} -d
RewriteRule ^.*$ - [NC,L]
RewriteRule ^.*$ index.php [NC,L]

The rewrite rule will route all requests to index.php, unless a file actually exists
and if the file does exist, it will serve that file. This is because we can have
images, CSS, and other assets accessible to the public. We also set the application
APPLICATION_ENV environment variable using SetEnv, currently we are using
development. If we were in another environment, then we would change that here.

The .htaccess is actually missing one important directive, that is to turn PHP short
tags on. As we will be using short tags later in our Views, we can add this to our
.htaccess.

php_value "short_open_tag" "on"

This can also be done in the php.ini. However, the .htaccess is better if you don't
want short tags to be global.

Why route everything to index.php? In Zend Framework, we route all requests to
index.php, as we are going to be utilizing Zend Framework's MVC architecture, the
basis of which uses the Front Controller design pattern. This pattern is defined as:

The Front Controller consolidates all request handling by channeling requests
through a single handler object. This object can carry out common behavior,
which can be modified at runtime with decorators. The handler then dispatches to
command objects for behavior particular to a request.

Martin Fowler—Patterns of Enterprise Application Architecture
http://martinfowler.com/eaaCatalog/frontController.html

On its most basic level, the Front Controller in Zend Framework decides what
controller/action to call when a request is made and stops us from the need to
have multiple PHP files in the public directory like about.php.

Application configuration
Although Zend_Application is taking care of the bootstrapping for us, it requires
some configuration. Zend_Tool again creates the basic configuration for us, which is
stored in the configs directory.

application/configs/application.ini

[production]
phpSettings.display_startup_errors = 0
phpSettings.display_errors = 0

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[17]

includePaths.library = APPLICATION_PATH "/../library"
bootstrap.path = APPLICATION_PATH "/Bootstrap.php"
bootstrap.class = "Bootstrap"
resources.frontController.controllerDirectory = APPLICATION_PATH
 "/controllers"

[staging : production]

[testing : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

[development : production]
phpSettings.display_startup_errors = 1
phpSettings.display_errors = 1

The default config file contains four sections that match the environment types
that are available in our application. Zend_Application has many configuration
options that we won't look at in detail yet. The three important ones for now
are boostrap.path, boostrap.class, and resources.frontController.
controllerDirectory. These tell Zend_Application where the main bootstrap
file is located, tell Zend_Application the class name of the bootstrap class, and
tell the Front Controller where its controller files are located respectively.

The bootstrap file
The final part of the bootstrapping process is the Bootstrap class. All Zend
Framework applications that use Zend_Application must have at least one
Bootstrap class. Zend_Tool must have created this for us, so let's look at what
it did.

application/Bootstrap.php

<?php
class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{}

We can see that the Bootstrap class is just an empty class that subclasses the
Zend_Application_Bootstrap_Bootstrap class. Now, in most applications, this
would not be the case, and the Bootstrap class would contain methods that initialize
various parts of the application such as logging and so on.

We will come back to this later and add in some of our own initialization code.
For now though, let's get on and look at some controllers.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[18]

Your first controller
At this point, we already have a fully working web page. However, to understand a
bit more about what we have done, let's look at the controllers created by Zend_Tool.
This controller is called an Action Controller, and Zend_Tool creates two controllers
by default (indexController.php and ErrorController.php). These are located
in the application/controllers directory. The Action Controller is concerned
with our application's control logic and is part of the 3-tier separation that
Model-View-Controller offers.

If we start by opening the indexController.php file, then we see the following:

application/controllers/indexController.php

<?php
class IndexController extends Zend_Controller_Action
{
 public function init()
 {
 /* Initialize action controller here */
 }

 public function indexAction()
 {
 // action body
 }
}

The first thing to note about Action Controllers is their naming. Naming
needs to take a consistent form so that the Front Controller can find the file
and execute its Actions. In case of IndexController, we name the file as
IndexController.php, which defines this as the index controller. Inside the file,
we name the controller class IndexController, which matches the filename. The
matching of the filename and class name is very important. If we don't do this, then
it will cause the Front Controller to throw a not found exception.

Now, when we edit the index controller we are going to change the default controller
so that we can test out some of the MVC features.

application/controllers/IndexController.php

<?php
class IndexController extends Zend_Controller_Action
{
 public function init()
 {
 $this->_helper->viewRenderer->setNoRender();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[19]

 }

 public function indexAction()
 {
 $this->getResponse()
 ->appendBody('Hello from indexAction');
 }
}

Open your browser and browse to http://127.0.0.1:8080/.

You should now see the following screenshot in your browser:

Let's break this down and have a look at the Action Controller's functionality in
more detail.

The Action Controller
Zend Framework provides the Zend_Controller_Action abstract class, which gives
us the base functionality for our controllers. This includes view integration, data
accessors, and utility methods.

Subclassing
In order to create a new controller, we have to subclass the
Zend_Controller_Action while providing a concrete implementation
for our controller. This can then be called by the Front Controllers dispatch
process. We do this in our IndexController:

class IndexController extends Zend_Controller_Action

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[20]

We could also create another abstract class that subclasses Zend_Controller_Action
to create our own base action controller. This is useful if you have code that is common
to all of your controllers. For example, if we needed to regularly access a logging
object to add log messages for our controllers, then we could move the instantiation
code into our own base controller. By doing this, we can remove repeated code in
our controllers.

abstract class My_Controller_Action extends Zend_Controller_Action
{
 public $logger;
 public function getLog()
 {
 /* Returns a log instance */
 }
}

Once we have our own base controller, we can then use it to create our controllers.

class IndexController extends My_Controller_Action
{
...

We will now have access to the log instance in all of our controllers through the
getLog() method. As you can see, Zend Framework provides a great deal of
flexibility in the way we can work with our controllers. However, we should use
the above controller sparingly, as we will have problems with inheritance down the
line. A better approach for this would be to create an Action Helper. We will address
these later.

Initialization
Zend_Controller_Action also provides us with an easy way to add controller
initialization code through the init() method. This is called when the controller is
instantiated by the Front Controller during the dispatch process. We can see this by
looking at the constructor of Zend_Controller_Action.

Zend_Controller_Action

public function __construct(Zend_Controller_Request_Abstract
 $request, Zend_Controller_Response_Abstract $response, array
 $invokeArgs = array())
{
 $this->setRequest($request)
 ->setResponse($response)
 ->_setInvokeArgs($invokeArgs);
 $this->_helper = new Zend_Controller_Action_HelperBroker($this);
 $this->init();
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[21]

We use this in our IndexController by overriding the init() method. It is
important that we do not override the constructor, as this will cause errors later on
if we forget to call the parent constructor. Therefore, we always use the init() for
constructing time code.

application/controllers/IndexController.php

public function init()
{
 $this->_helper->viewRenderer->setNoRender();
}

The actions we perform in the init() method are controller wide, as init() is
called every time the controller is instantiated. In IndexController, we are using
the viewRenderer Action Helper to turn off automatic view rendering for all of the
actions in our controller. We will look at Action Helpers in more detail shortly.

Actions
Some of the most important parts of our controllers are the actions they contain.
Without actions, our controllers wouldn't do anything. In order to create an action,
we add a new method that has Action appended to its name. The Front Controller
will then automatically recognize them as actions. We can have as many actions as
we like in our controllers, and we can also have other methods that are not actions.
Non-action methods must not have Action appended to them. In our controller,
you can see that we have the init() method, and that it does not have Action. This
means that it is not publicly accessible.

If we look at IndexController, we have one Action method called indexAction.
If we want to add another action, then we simply create a new method. So, if we
wanted an action called about, then we would create a method called aboutAction.

Zend_Tool can create actions for us. In order to create a new action within a
controller, we can run the following command:

For Windows users:

bin\zf.bat create action about index

For Linux and Mac users:

bin/zf.sh create action about index

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[22]

This command will create a new action within the IndexController and a view
script for this action. Once this is done, edit the IndexController and add the
following to the aboutAction:

application/controllers/IndexController.php

<?php
class IndexController extends Zend_Controller_Action

{
 public function init()
 {
 $this->_helper->viewRenderer->setNoRender();
 }

 public function indexAction()
 {
 $this->getResponse()
 ->appendBody('Hello from indexAction');
 }

 public function aboutAction()
 {
 $this->getResponse()
 ->appendBody('Hello from aboutAction');
 }
}

Easy, isn't it? Now, if we browse to http://127.0.0.1:8080/index/about, we
should see the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[23]

If we try deleting the Action from aboutAction, so that the method is now called
about, and visit the above URL again you will see that an error saying that the action
could not be found is displayed:

We can also add another method to handle undefined actions. This method is
given below:

application/controllers/IndexController.php

<?php
class IndexController extends Zend_Controller_Action

{
 public function init()
 {
 $this->_helper->viewRenderer->setNoRender();
 }

 public function indexAction()
 {
 $this->getResponse()
 ->appendBody('Hello from indexAction');
 }

 public function aboutAction()
 {
 $this->getResponse()
 ->appendBody('Hello from aboutAction');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[24]

 }

 public function __call($method, $args)

 {

 if('Action' == substr($method, -6)) {

 $this->_forward('index');

 }

 }

}

Adding the PHP magic method __call(), will invoke this method when an
undefined action is called. We can then check if it is an action call and then do
something like display an error or call a different action. In our example, we use the
_forward() utility method to call indexAction. By doing this, if we try to call an
undefined action, we will get the indexAction.

The standard router
As we have mentioned before, Zend Framework uses a Front Controller that takes
our request and processes it. An important part of this is the standard router. The
router is responsible for taking a request and translating it to decide what module,
controller, and action is being requested. The translation is based on predefined
rules or routes. The standard router defines a default route, which we have already
been using in our application. We will look more closely at routes and the dispatch
process when we look at the Zend Framework's Architecture. For now, let's take a
look at the default route.

The default route needs to determine the following elements from the request:

Module
Controller
Action

In the Standard Router, this information is taken from the URI endpoint of the HTTP
request. The endpoint is the part after the base URI. Therefore, the URI is broken
down like this:

http://domain.com/moduleName/controllerName/actionName

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[25]

As you can see, it's pretty straightforward. We simply give the names of the module,
controller, and action that we want to call. You may be wondering where the module
has come from, as it does not fit into our example. Zend Framework supports
modules, which are used to group controller files into directories. This is so that we
don't get directories full of more controllers than we can manage. Since our example
does not use modules, our controllers are associated with the default module,
imaginatively named default. For the default modules (and controllers),
we are not required to enter their identifiers in the URI.

If we look at our IndexController, we can see that when we browse to
http://127.0.0.1:8080/index/about, we are telling the Front Controller
we want IndexController and aboutAction. You can also see that we have
not set up a module, as the module part is not required.

In order to clarify a bit more, here is a table of the active routes in our application:

URI Module / Controller / Action Called
http://127.0.0.1:8080/ Default / IndexController / indexAction
http://127.0.0.1:8080/index Default / IndexController / indexAction
http://127.0.0.1:8080/index/index Default / IndexController / indexAction
http://127.0.0.1:8080/index/about Default / IndexController / aboutAction

In addition to being able to call the controller and action we want, we can also send
extra data with the request through the URI. In order to send extra data or user
parameters, we simply add them to the URI. For example, if we want to send a user
parameter called name to the aboutAction, then we would create a URI like:

http://127.0.0.1:8080/index/about/name/keith

This would then create a new user parameter called name with the value of keith.
The parameter would then be set in the request object and is available to our
application. This behavior does not affect the standard HTTP GET, so you can
still use GET in your URIs.

Therefore, this is valid, and you have access to all of the data passed here at:

http://127.0.0.1:8080/index/about/name/keith?age=26&country=England

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[26]

Let's try some of this out on our IndexController. Edit the indexAction to this:

application/controllers/IndexController.php

public function indexAction()
{
 $name = $this->_getParam('name','guest');

 $this->getResponse()
 ->appendBody('hello ' . $name . ' from indexAction');
}

Now, browse to http://127.0.0.1:8080/index/index/name/keith, and you
should now see hello keith from indexAction displayed in your browser as follows:

In indexAction, we use the accessor method _getParam() to retrieve our passed
in username parameter value, and store it in $name. The _getParam() takes
two arguments:

the name of the parameter you want to retrieve
default value if it is not set, which is optional

The data returned is retrieved from the request object. The request object is a value
object that contains information about the request. When using _getParam(), it is
important to note that the request object aggregates request data. This means that
when we use _getParam(), the request object will look for data in user parameters
GET and then POST. Therefore, the above example will still work if we send the name
as a GET parameter. This behavior can be customized using the setParamSources()
method of the request object.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[27]

Finally, we pass the $name into the response object's body so that it will be rendered
at the end of the dispatch process. You may have noticed that we haven't escaped the
data we are outputting. In a normal situation, we would have to escape the $name
variable before outputting it to the browser to stop Cross Site Scripting attacks, this
has been left out simply for brevity.

Utility methods
The Zend_Controller_Action abstract class provides utility methods that help us
with some common tasks when using the MVC functionality.

_forward utility method
The _forward() utility method is used to call actions. This helps us to easily move
from action to action if we need to.

_forward($action, $controller = null, $module = null,
 array $params = null)

Looking at the _forward definition, we can see that it takes up to four arguments,
three of which are optional:

$action (string required): The action to call.
$controller (string optional): The controller the action is in.
$module (string optional): The module the controller is in.
$params (array optional): User parameters to send with the request.

If you only supply $action _forward(), then it will look for the action within the
current controller. We can try this out by using our basic application.

We first need to create a new controller. We can do this by using Zend_Tool with the
following command.

For Windows users:

bin\zf.bat create controller Contact

For Linux and Mac users:

bin/zf.sh create controller Contact

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[28]

Running this command will create a new controller for us and create the related View
directories for this controller. Once the controller is created, edit it so that it looks like
the example that follows:

application/controllers/ContactController.php

<?php
class ContactController extends Zend_Controller_Action
{
 public function init()
 {
 $this->_helper->viewRenderer->setNoRender();
 }

 public function indexAction()
 {
 $this->getResponse()
 ->appendBody(' You can contact me @ ' . $this
 ->_getParam('email', ''));

 }
}

Edit IndexController and add the following code:

application/controllers/IndexController.php

public function aboutAction()
{
 $this->getResponse()
 ->appendBody('hello from aboutAction');
 $this->_forward('index', 'contact', null,
 array('email' => 'me@example.org'));
}

Now, if we browse to http://127.0.0.1:8080/index/about, then we should see
the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[29]

In IndexController, we have forwarded the request to our new controller's
index action and passed with it a new user parameter called email. Then in
ContactController, we have added some text and the new email user parameter
to the response object. You should also notice that the URL does not change, and we
are still in /index/about. This is important because when we forward, we forward
internally, which means we are still using one request.

_redirect utility method
The _redirect() utility method is in a way the opposite to _forward().
Where _forward() calls an action within the same request, _redirect()
performs an HTTP redirect creating a new request.

redirect() accepts the following arguments:

$url (string required): The URL to redirect to
$options (Array Optional)

And the $options can be:

exit (Boolean): Whether to exit straight away, or not
prependBase (Boolean): Prepend the base URL, or not
code (String): The HTTP code to use

By default, _redirect() will do a 302 redirect.

Action Helpers
Action Helpers are used to provide extra functionality to Action Controllers, without
the need to extend the abstract Action Controller. They are very useful when we
need common functionality between controllers. We have already used one of the
default Action Helpers in our own controllers to turn off view rendering.

application/controllers/IndexController.php

public function init()
{
 $this->_helper->viewRenderer->setNoRender();
}

During the initialization of IndexController and ContactController, we call the
viewRenderer Action Helper and set the noRender flag on the view object. By doing
this, we stop the default behavior of the viewRenderer from automatically rendering
the view object for each action within our controller. If we did not do this for our
examples, then we would get errors from the view object saying it could not find

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[30]

the view script. This is because we have not created any yet. The Action Controller
Abstract contains the _helper property, which contains the Action Helper Broker.
The broker is responsible for managing the registration and retrieval of helper
objects. Therefore, we use $this->_helper to access our registered helpers. We can
also use the getHelper() or getHelperCopy() methods, define our own helpers,
and register them with the broker.

Zend Framework provides the following Action Helpers:

ActionStack: Enables a stack of actions to be called
AutoComplete: Ajax auto completion
ContextSwitch: Switch response formats based on a context
AjaxContext: Same as ContextSwitch, but for Ajax specifically
FlashMessenger: Handles messages for the user between requests
JSON: Easy JSON output
Redirector: HTTP redirector
ViewRenderer: View initialization and rendering

As you can see, there are many default Action Helpers defined. We will try and use
many of these as we progress through the book. For now, let's move on and make
our application actually output some HTML.

Your first view
Now that we have our basic application structure and our controllers working, let's
look at views. Views obviously form the V part of MVC, and are responsible for the
display. This display could be the user interface HTML, JSON output, and so on. By
using views instead of writing directly to the response object like we have done so
far in our examples, we achieve the MVC goal of separating view from control logic.
Let's go ahead and create our first view.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[31]

View directories
When Zend_Tool created our project and as we added more Controllers and Actions
to our application, various View-related folders and files were created. If we now
look inside, we will see what Zend_Tool has created:

The first thing we see here is that we have a views folder within the application
folder. This holds all of the Views, View Helpers, and View Filters for our
application. Within the views folder, we have two directories helpers and scripts.
These directories contain View and View Helpers respectively. We may also have
a filters folder. However, Zend_Tool does not create this for us. Within the scripts
folder, we have another three folders. Each folder relates to a controller name.
So in our application—we have contact, error, and index that match the three
controllers we have ContactController, ErrorController, and IndexController.
All of these were created by Zend_Tool as we added the Controllers and Actions to
our application.

Creating a view
As we have been using Zend_Tool, all of the Views have already been created for us.
Therefore, we only need to edit what is already there to get our application working.
Views in the Zend Framework are written in PHP and are known as View Scripts.
All View Scripts have their files ending in .phtml. We can see that Zend_Tool has
created all the .phtml files for us, and they are contained within their respective
controller View Script folders.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[32]

So let's now edit the index controller's index view script and add in some of our own
code. We can delete any code that is already in these files.

application/views/scripts/index/index.phtml

<html>
<head>
 <title>Hello Zend</title>
</head>
<body>
 <h1>Hello Zend</h1>
 <p>Hello from Zend Framework</p>
</body>
</html>

That's it! Our first view has been created. As you can see, it's just some very simple
HTML. However, if we browse to http://127.0.0.1:8080/, we don't see this
rendered. We need to refactor our controller to get things working.

application/controllers/IndexController.php

public function init()
{}

public function indexAction()
{
 $name = $this->_getParam('name', 'guest');

}

We first remove $this->_helper->viewRenderer->setNoRender(); from
the init() method. This tells the viewRenderer that we want its default
behavior of automatically rendering the view scripts for us. Then, we remove
$this->getResponse()->appendBody('hello ' . $name . ' from
indexAction'); from the indexAction. This is because the view will write
to the response object for us.

If we now browse to http://127.0.0.1:8080, we should see the HTML rendered
from our view script. When we visit our page, the viewRenderer Action Helper
is automatically instantiating a view object and looking for our view script in
/application/views/scripts/index/ and then rendering it for us.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[33]

Of course, we can also pass data into the view. In order to do this, we simply set the
data in the view object, which is stored in the Action Controllers $view property.

application/controllers/IndexController.php

public function indexAction()
{
 $this->view->name = $this->_getParam('name', 'guest');

}

application/views/scripts/index/index.phtml

<head>
 <title>Hello Zend</title>
</head>
<body>
 <h1>Hello Zend</h1>
 <p>Hello <?=$this->Escape($this->name);?> from Zend Framework</p>
</body>

In our IndexController, we assign the name user parameter into the view, and then
in the view we echo it out. There are a couple of important things happening in the
view. First, we are escaping the output using the Escape() view method. Second,
we are using PHP short tags.

Escape() is used to safely output data in views. You should always make sure
your data is escaped, unless you know that it has already been escaped. This
will help prevent Cross Site Scripting attacks. By default, Escape() uses the
htmlspecialchars() PHP function for escaping. You can customize this by
using the setEscape() method of the view object. This accepts a callback
function that will be used for escaping.

We are using PHP short tags, because it makes our view much easier to read and much
more designer friendly. If you do not have short tags enabled, then you will need to
enable them for the examples to work. There is also a special stream wrapper for views
that will automatically convert short tags into long tags. However, you will take a
performance hit when using it. I would only use this if you can't enable short tags.
You can enable the stream wrapper using $view->setUseStreamWrapper(true);
on the view.

Now, we have our view, which is rendering our user parameter. If we browse to
http://127.0.0.1:8080/index/index/name/keith, then we should now see
Hello keith from the Zend Framework displayed. We should note here that we
have to use index/index/ to access the indexAction of the indexController.
Using index/name/keith would not work, as the dispatcher would look for the
nameAction in the indexController.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[34]

There is also another method of assigning variables to the view object using the
assign() method. This can be helpful for assigning multiple values to the view.
Let's have a little play with assigning some variables using assign().

application/controllers/IndexController.php

public function indexAction()
{
 $date = new Zend_Date();

 $data = array(
 'hour' => $date->get(Zend_Date::HOUR),
 'min' => $date->get(Zend_Date::MINUTE),
 'sec' => $date->get(Zend_Date::SECOND)
);

 $obj = new stdClass();
 $obj->day = $date->get(Zend_Date::DAY);
 $obj->month = $date->get(Zend_Date::MONTH);
 $obj->year = $date->get(Zend_Date::YEAR);

 $this->view->assign($data);
 $this->view->assign((array) $obj);
 $this->view->name = $this->_getParam('name', 'guest');
}

application/views/scripts/index/index.phtml

<html>
<head>
 <title>Hello Zend</title>
</head>
<body>
 <h1>Hello Zend</h1>
 <p>
 Hello <?=$this->Escape($this->name); ?> from Zend Framework
 @ <?=$this->Escape($this->hour); ?>:<?=$this->Escape($this-
 >min); ?>:<?=$this->Escape($this->sec); ?>
 on <?=$this->Escape($this->year); ?>/<?=$this->Escape($this-
 >month); ?>/<?=$this->Escape($this->day); ?>
 </p>
</body>
</html>

If we now browse to http://127.0.0.1:8080/index/index/name/keith, then we
can see that the date and year is displayed after the hello message.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[35]

The first way in which we use assign() is to add values stored in an array using
$this->view->assign($data);. This assigns the matched pair values to the view
object, so hour gets assigned to the view with a value of the current hour, and so on.

In the second method, we use assign() to add the values of an object's public
properties using $this->view->assign((array) $obj);. This will assign all of
the public properties to the view, so day gets assigned to the view with a value of
the current day, and so on. Note that we need to cast the object to an array for this to
work, as the assign method only accepts both a string and a value or an array. It does
not automatically convert objects for us.

View Helpers
View Helpers are an important tool in creating our view. Just as the Action
Controller has Action Helpers, the view has View Helpers. These are helper
classes that assist us in creating our view. Zend Framework packs a number of
View Helpers, most of which are used for creating HTML elements. Let's look at
an example of using a View Helper.

URL View Helper
One common task when creating web pages is creating links that point to other parts
of your web site. To help with this, we have the URL View Helper. To use the URL
Helper, we simply need to call it from within one of our view scripts.

application/views/scripts/index/index.phtml

<html>
<head>
 <title>Hello Zend</title>
</head>
<body>
 <h1>Hello Zend</h1>
 <p>
 Hello <?=$this->Escape($this->name); ?> from Zend Framework
 @ <?=$this->Escape($this->hour); ?>:<?=$this->Escape($this-
 >min); ?>:<?=$this->Escape($this->sec); ?>
 on <?=$this->Escape($this->year); ?>/<?=$this->Escape($this-
 >month); ?>/<?=$this->Escape($this->day); ?>
 </p>
 <p>
 <a href="<?=$this->url(array('controller' => 'contact',
 'name' => $this->name), null, true);?>">Contact Me!
 </p>
</body>
</html>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[36]

All View Helpers are available through the view instance ($this). In order to
invoke the URL Helper, we simply enter $this->url(). The URL Helper returns
a string of the generated URL. We also have to provide some arguments to tell the
helper where we want the link to point. If we do not provide any arguments,
then the returned string will be the current URL. The URL Helper accepts the
following arguments:

$urlOptions (array optional): An associative array containing options for
the router
$name (string optional): The name of a route
$reset (Boolean optional): Whether to reset the route or not

In our example, we supply $urlOptions to define the controller that we want to
link (contact), and we also define a new user parameter (name). We do not supply
a $name, as we don't have any routes setup in the router. The URL Helper uses
the router to assemble the URL. This is partly why using the URL Helper is a good
practice, as our links are then router aware. We will be using the router later, so
don't worry about the fact that we haven't covered it yet. Finally, we set the reset
flag to true so that any user parameters in the current request are not appended
to the URL.

This will then produce a URL like /contact/index/name/guest if we browse to
http://127.0.0.1:8080/ and will produce a URL like /contact/index/name/
keith if we browse to http://127.0.0.1:8080/index/index/name/keith.

As you can see, using View Helpers is pretty straightforward. However, you may
be wondering why you would use the URL Helper, as it adds a lot of code into the
view. The reason we use the URL Helper is mainly for maintainability. If we change
any of the routes later, then we won't need to update our code. You will see this in
action when we start using custom routes later.

There are many more View Helpers available. These include the following:

Action View: Calls an Action
Partial: Renders another view in its own variable scope
Placeholder: Persists content between Views
Doctype: Returns the doctype
HeadLink: Links CSS
HeadMeta: Meta tags
HeadScript: Script tags
HeadStyle: Style tags

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[37]

HeadTitle: Document title
JSON: Easy JSON output
Translate: Language translation
InlineScript: Inline script tag
HTML Object: Flash
Various Form Element Helpers: Creating forms

We have a wide range of View Helpers to choose from when creating our views.
We will be using many of these as we progress and will create some of our own
View Helpers.

View customization
There are many situations where we need to customize our view instance. We have
briefly mentioned some of these customizations such as setting the escaping used by
the view.

In order to show this, let's add some view customization to our Bootstrap class.
Add the following method to the Bootstrap class:

application/Bootstrap.php

 protected function _initViewSettings()
 {
 $this->bootstrap('view');
 $view = $this->getResource('view');
 $view->doctype('XHTML1_STRICT');
 }

Here, we have created a new bootstrap resource, which will be executed by
Zend_Application during the bootstrap process. Inside the _initViewSettings()
method, we first call the view resource ($this->boostrap('view')). This is a
default resource provided by Zend_Application that initializes the view for us.
Internally, the view resource creates a new view instance for us and registers a new
ViewRenderer Action Helper to the Action Helper Broker. This allows us to then get
the Zend_View instance from the resource and configure it.

We only apply one small configuration to our view instance. This is the doctype for
Zend_View to use, and we set this to XHTML1_STRICT. This will now make Zend_View
produce XHTML1 compliant HTML. We can also use the Doctype view helper to add
the doctype declaration to our pages. In order to do this, we simply edit any of our
.phtml view scripts and add this at the top:

<?= $this->doctype() ?>

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[38]

If we now browse to http://127.0.0.1:8080 and view the HTML source, we see
that we have the doctype definition added to our document.

Handling errors
Something that all applications need is error handling, and most important of all
is displaying meaningful errors to users. So far, our application has no nice way to
display errors to users, or to us for that matter. Zend Framework provides a default
way of handling thrown exceptions through the ErrorHandler Front Controller
plugin. This plugin is automatically registered and enabled by default. If you do not
wish to use the ErrorHandler, then set the noErrorHandler parameter to true on
the Front Controller or set throwExceptions to true on the Front Controller.

Zend_Tool has already created an ErrorController and error view for us. If we
open the ErrorController and its view, then we see the following:

application/controllers/ErrorController.php

<?php
class ErrorController extends Zend_Controller_Action
{

 public function errorAction()
 {
 $errors = $this->_getParam('error_handler');

 switch ($errors->type) {
 case Zend_Controller_Plugin_ErrorHandler::
 EXCEPTION_NO_CONTROLLER:
 case Zend_Controller_Plugin_ErrorHandler::
 EXCEPTION_NO_ACTION:

 // 404 error -- controller or action not found
 $this->getResponse()->setHttpResponseCode(404);
 $this->view->message = 'Page not found';
 break;
 default:
 // application error
 $this->getResponse()->setHttpResponseCode(500);
 $this->view->message = 'Application error';
 break;
 }

 $this->view->exception = $errors->exception;
 $this->view->request = $errors->request;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 1

[39]

application/views/scripts/error/error.phtml

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN";
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>
 <title>Zend Framework Default Application</title>
</head>
<body>
 <h1>An error occurred</h1>
 <h2><?= $this->message ?></h2>

 <? if ('development' == APPLICATION_ENV): ?>

 <h3>Exception information:</h3>
 <p>
 Message: <?= $this->exception->getMessage() ?>
 </p>

 <h3>Stack trace:</h3>
 <pre><?= $this->exception->getTraceAsString() ?>
 </pre>

 <h3>Request Parameters:</h3>
 <pre><? var_dump($this->request->getParams()) ?>
 </pre>
 <? endif ?>

</body>
</html>

In order to see this in action, we need to edit the .htaccess file and change the
application environment to production. By default, we are in a development
environment where the error controller is not used.

public/.htaccess
SetEnv APPLICATION_ENV production

Now, if we browse to a page that does not exist, we should see a 404 page, for
example, http://127.0.0.1:8080/thisdoesnotexist.

Our ErrorController simply gets the ErrorHandler and then uses it to decide
what type of error to display. At the moment, this is very simplistic. However,
for most applications you will probably want to add a lot more into your
ErrorController. For example, you could add logging through Zend_Log.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Creating a Basic MVC Application

[40]

When an exception is thrown within one of our Action Controllers or from the Front
Controller when it cannot find a Controller or Action, it will set the type of error. The
type of error can be:

EXCEPTION_NO_CONTROLLER
EXCEPTION_NO_ACTION
EXCEPTION_OTHER

These are set as class constants of the Zend_Controller_Plugin_ErrorHandler
class. We also have access to the exception through the public exception property of
the ErrorHandler. From this we can get the error message, stack trace, and so on.

It is important to note that the ErrorHandler handles only exceptions thrown from
missing Action Controllers or internal application errors. It is not designed to catch
errors from routing or other plugins.

Summary
In this chapter, we have looked at the basics of building a web application using the
Zend Framework's MVC components. We have created a very simple application
and have briefly looked at some of the core components and their various uses.
Hopefully, you have an idea of what you can do with the Zend Framework and how
flexible it really is. In the next chapter, we will look at the architecture and inner
workings of the MVC components to help you understand just what exactly happens
when a request is made, and show you the various ways in which you can customize
and extend all of these features.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework
MVC Architecture

So far, we have built a very simple web application. While doing this, we have
skipped over a lot of the details surrounding what exactly is happening when
we use the Zend Framework's MVC components. Understanding the objects and
interactions of the MVC components are very important to us. Without it, we would
never really be able to get the full benefit from the Zend Framework. The aim of
this chapter is to take you through the main aspects of the Zend Frameworks MVC
implementation and give you a good foundation in the conventions and language of
the Zend Framework.

In this chapter, we will cover the following topics:

1. Zend framework MVC overview
2. The Front Controller
3. The router
4. The dispatcher
5. The Request object
6. The Response object

Zend framework MVC overview
Before we dive in and look at each MVC component, let's look at the general
processes that happens when we make a request to a Zend Framework
MVC application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[42]

What is a request
A request can be a user sending an HTTP request from their browser, or any other
type of request that accesses our application such as web service, socket, command
line, and so on. A request contains information that is used by an application to
produce a response. An example of this is when you request a web page from a web
server. The web server takes the information provided in the URI and renders the
page being requested. The response is the web page. A request is just the same in
the Zend Framework. A user makes a request to the application, and the application
produces the correct response.

Request handling
So how are requests handled in Zend Framework? We have already seen in
Chapter 1, that the Front Controller handles requests and also produces a response.
What we haven't looked at is what happens along the way to produce the response.

The request handling process is a bit like a factory production line. A customer
makes a request, the manager tells the workers to create the product, and the product
is delivered to the customer. This is illustrated below in the upcoming diagram. I
have included some of the names of the main MVC components beside each element.

Product
Response Object

Manager
Front Controller

Customer
Request Object

Workers
Action Controller

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[43]

In our simplified example, the basic process is as follows:

1. The customer makes a request. This request is the Request Object.
2. The manager decides what should be done. This is the Front Controller.
3. The manager sends the product to the production line. This is the Response

Object.
4. The workers add to the product to complete the request. These are the Action

Controller(s).
5. The workers give the finished product back to the manager, who in turn

gives it to the customer.
6. The request has been fulfilled and everyone is happy.

We see that we now have a collection of objects that handle our request. We have
already used these in Chapter 1 when we created our HelloZend application. We
used the Request Object to retrieve variables passed into the request and to decide
what Controller Action to call. We used Front Controller to handle our request,
Response object to produce output when we had no views, and we used Controller
Actions to create functionality.

Lets leave our simple example, and look at the process in a bit more detail.

A
Request routeShutdown

dispatchLoopStartup

preDispatch

Dispatcher

postDispatch

Action
Controller

Actions
Left?

dispatchLoopShutdown

Send
Response

routeStartup

Request
Object

Response
Object

Router

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[44]

There is quite a bit going on here, but the main concept is still present. A request is
made and a response returned. But what happened to the Front Controller? Well
this is what happens inside the Front Controller, as you can see it does a lot of work
for us! This process is usually called the dispatch process in the Zend Framework
and happens when you call the Front Controllers dispatch() method. This can be a
little confusing at first because we also have a dispatcher object, which is part of the
dispatch process.

The process can be broken down like this:

1. A request is made and the Request Object is created.
2. The routeStartup event is fired.
3. The Router processes the request.
4. The routeShutdown event is fired.
5. The dispatchLoopStartup event is fired.
6. The dispatch loop is started.
7. The preDispatch event is fired.
8. The Dispatcher calls the Action Controller.
9. The Action Controller writes to the Response Object.
10. The postDispatch event is fired.
11. If there are actions left to call, then go to Step 7.
12. The dispatchLoopShutdown event is fired.
13. The Response is sent back.

It's not too far away from our example of the factory production line. The main
bulk is taken up by events from which we can extend the dispatching process.
The Front Controllers Plugin Broker handles the events. We have already used the
routeStartup event to create our initialization plugin in Chapter 1. We also have
some objects that we haven't seen before, that is, the Router and the Dispatcher. The
Router is responsible for routing requests to the correct Action Controller (remember
we used the Standard Router in Chapter 1). The Dispatcher is responsible for
actually calling each Controller Action and is used inside the Dispatch Loop
in the Front Controller.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[45]

Abstractness of MVC components
The abstractness of MVC components allows us to easily extend and change the
MVC components to match our requirements. If we are using the MVC components
to create web applications, we generally will never need to take advantage of this.
However, this is an important part of the design of the Zend Framework's MVC
components and is one of the reasons why the framework is so flexible.

This means that we can easily create our own versions of them, but why would
we want to? There are some use cases where we may want to create our own
custom functionality for one of the MVC components. For example, we may want
to use a very specialized directory structure for our application. By subclassing the
Zend_Controller_Dispatcher_Abstract, we could create a way to handle this
requirement. There are, of course, other times when you may want to do this, but
they are mainly advanced use cases. For the majority, the standard MVC components
should suffice. I should also warn you that you should try and avoid doing this unless
it is absolutely necessary. Always try to use Front Controller plugins, the Action
Controller helpers, and so on, before resorting to extending the MVC components.

Now that we have a good overview of the MVC process, we can look at each MVC
component in detail.

The Front Controller
The Front Controller is the main workhorse of the MVC components, as it
instantiates objects, fires events, and sets up default behaviors. Its main purpose
is to handle all the requests coming into the application.

Design
The Front Controller is a web presentation design pattern and is used by various
MVC frameworks. When we refer to the Front Controller in Zend Framework, we
actually refer to the Zend_Controller_Front class. This class implements the
Front Controller design pattern.

Another point to note about the Front Controller's design is that it is Singleton. This
means that it implements the Singleton design pattern. Singleton is used to manage
object instantiation and usually limits the amount of objects that can be created
to one. Therefore, this means that there can only ever be one instance of the Front
Controller. It also means that we cannot directly instantiate the Front Controller,
instead we must fetch one.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[46]

In order to fetch an instance of the Front Controller, we use the getInstance()
method. You will remember that we did this in our bootstrap file earlier.

$front = Zend_Controller_Front::getInstance();

If we try to instantiate the class directly like this:

$front = new Zend_Controller_Front();

We will get an exception telling us that the Front Controllers construct is a
protected method.

Defaults
As the Front Controller is responsible for instantiating various MVC components for
us there are default behaviors created. The default behavior of the Front Controller is
geared towards web applications, which means that many of the objects instantiated
by the Front Controller are specialized for an HTTP environment. Let's look at some
of the defaults that the Front Controller uses. The following table shows the default
objects used by the Front Controller.

Type Abstract class Concrete class used
Request Zend_Controller_Request_Abstract Zend_Controller_Request_Http
Response Zend_Controller_Response_Abstract Zend_Controller_Response_Http
Router Zend_Controller_Router_Abstract Zend_Controller_Router_Rewrite
Dispatcher Zend_Controller_Dispatcher_Abstract Zend_Controller_Dispatcher_

Standard
Plugin
Broker *

Zend_Controller_Plugin_Abstract Zend_Controller_Plugin_Broker

*Plugin Broker is not customizable

This table shows us the type of object created, the abstract class that the concrete is
based upon, and the concrete class actually used by the Front Controller. The plugin
broker is a bit special as it is the same no matter the environment, so it would be
the same in HTTP as it would in CLI. I have included it only as it is instantiated
by default. All of the other classes can be replaced with your own concrete
implementation. This is one of the reasons I like the Zend Framework so much;
it enables you to customize it in every way possible.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[47]

There are default Front Controller plugins available. The following table shows the
default plugins and whether they are registered by default or not:

Name Stack index Registered by default?
Zend_Controller_Plugin_ErrorHandler 100 Yes
Zend_Controller_Plugin_ActionStack n/a No

The only Front Controller plugin currently registered by default is the ErrorHandler.
This is used if an error occurs to forward it to the ErrorController. We have
used this in our Hello Zend application earlier. We can disable this by setting
the noErrorHandler invoke parameter through setParam().The Stack Index is
important, since the higher it is, the later it will be called. This can be very useful to
know when you are creating your own plugins.

The Front Controller also registers the ViewRenderer Action Helper with the Action
Helper Broker by default. You can disable this by setting the noViewRenderer
invocation parameter.

Using the Front Controller
Now that we know a bit more about the Front Controller, let's look at how we can
customize its behavior.

Invocation parameters
Invocation parameters can be used to store data inside the Front Controller. This data
is then passed into the Action Controller, Router, and Dispatcher. For example, say
we needed to pass an object created during the bootstrap to the Controller Action,
we could do the following:

In bootstrap:

$obj = new MyClass();
$front->setParam('myObj',$obj);

We can then retrieve this from one of our controllers using the
getInvokeArg() method:

$myObj = $this->getInvokeArg('myObj');

Invocation parameters serve as an easy way to have common objects or variables
passed to your MVC components.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[48]

The Front Controller has the following methods for handling invocation parameters:

setParam(String $name, Mixed $value): Set an invocation parameter
setParams(Array $params): Set multiple invocation parameters
getParam(String $name): Retrieve an invocation parameter
getParams(): Retrieve all invocation parameters
clearParams(String|Array|Null $name): Clear a single or multiple or all
invocation parameters

Options
As well as invocation parameters, the Front Controller has some options that affect
its default behavior. The main methods are:

throwExceptions(Boolean $flag): Whether exceptions thrown during the
Dispatch Loop should be thrown or captured in the Response object.
setBaseUrl(String $base): Sets the base URL used to determine the path
information of the request. Path information is used to route the request to
the correct Action Controller. This is useful if we are running our application
from a sub-directory. For example, if we have our application inside the
/myapp folder, then we would use setBaseUrl('/myapp');. Remember not
to use the full URL like http://domain/myapp as this will cause errors.
returnResponse(Boolean $flag): By default, the Front Controller will
render the Response object once the dispatch loop has ended. If we set
returnResponse() to true, then the dispatch() method will return the
Response object instead of rendering it.
setDefaultControllerName(String $controller): The
default controller name is Index. You can change this by using
setDefaultControllerName().
setDefaultAction(String $action): The default action name is Index,
you can change this using setDefaultAction().

Modules, controllers, and actions
A major part of the Front Controllers responsibility is to help with the configuration
of modules, controllers, and actions. In order to work correctly, the Front Controller
needs to know where we have placed our controllers and how they are organized.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[49]

In our Hello Zend application, we used the most basic directory structure available
in the Zend Framework.

Using this structure, all of our controllers, models, and views are held in one folder.
However, this can become hard to manage and does not promote code reuse. In
order to overcome this, we can use modules. Modules simply enable us to group
controllers, models, and views into manageable units.

The two most common directory structures when using modules are as follows:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[50]

As you can see they are almost identical, but the second layout uses a modules
directory. The main reason for this is the way we tell the Front Controller about
our modules. It is also important to mention that you are not forced to used any of
these directory layouts. They are all customizable, however, these probably serve 99
percent of use cases.

If we consider our first layout, to enable this using the Front Controller, we can either
use the setControllerDirectory() or addControllerDirectory() methods. So
for our first layout we could do:

$front->setControllerDirectory(array(
 'default' => '/path/application/default',
 'product' => '/path/application/product'
));

Or:

$front->addControllerDirectory('/path/application/product', 'product');

These two methods are really the same. The only real difference is
that setControllerDirectory() accepts an array of modules and
addControllerDirectory() adds one module at a time. Remember that
we must specify a default module, which can be done either by passing the
default array key using setControllerDirectory or by not specifying the
module name using addControllerDirectory().

Our second layout is only slightly different, and all modules are held within a modules
directory. We can also add lots of modules using the addModuleDirectory() method
very quickly. So for our second layout we can use:

$front->addModuleDirectory('/path/application/modules');

This method is by far the easiest way to add many modules in your application. It
also means you don't have to reconfigure when you add new modules.

When we use modules, our Action Controllers that reside in non-default modules
need to follow a different naming convention to prevent namespace clashes. Therefore,
in our example, all Action Controllers within the product module would need to be
prepended with Product namespace. For example, the details Action Controller of
the products modules would be named Product_DetailsController. This is not
required for default (global) module Action Controllers. For example, the details
Action Controller of the default module would be named DetailsController.
However, you can change this behavior by setting the prefixDefaultModule
parameter in the Front Controller. You do this first by entering $front->setParam('
prefixDefaultModule ', true);. After this, your default module Action Controllers
would need to be prefixed with Default_.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[51]

All of the examples that we have looked at so far use the default configuration.
However, the Front Controller provides us with a variety of methods to help
customize this. Let's have a look at some of these methods:

setDefaultModule(String $module): Changes the module name from
default to something else. In our example, if we need to change the default
directory name to say core, then we would use $front->setDefaultModu
le('core');. This means that rather than having something like http://
domain/default/index, we would have http://doamin/core/index.
setModuleControllerDirectoryName(String $name): Sets the name of the
controllers directory. In our example, we could use $front->setModuleCo
ntrollerDirectoryName('c'); to enable us to use the directory name of c
rather than controllers.
setDefaultControllerName(String $name): Sets the default controller
name. By default, this is index. If we change the default controller name
when we send a request that does not specify the controller, then the new
default name will be used. For example, if we change the default index name
to base (setDefaultControllerName('base')), and browse to http://
domain/, then the controller that will be called will be BaseController.
setDefaultAction(String $name): This works exactly like
setDefaultControllerName but changes the default action name instead.
For example, if we change the default action name to base (setDefaultA
ction('base')), and browse to http://domain/index, then this will call
IndexController and the baseAction.

MVC component customization
For most scenarios, the default MVC components serve us well, but what if we need
to customize part of the MVC architecture? The Front Controller provides us with
methods to easily add in our own MVC components and replace the default ones.
Let's take a look at how to do this by replacing all of the default MVC components
with our own.

$front = Zend_Controller_Front::getInstance();

$myRequest = new MyRequest();
$myResponse = new MyResponse();
$myRouter = new MyRouter();
$myDispatcher = new MyDispatcher();

$front->setRequest($myRequest);
$front->setResponse($myResponse);
$front->setRouter($myRouter);
$front->setDispatcher($myDispatcher);

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[52]

In our example, we have replaced all the MVC components with our own
implementations. In order to do this, we can subclass each of the MVC component's
abstract classes or one of the concrete implementations to create our own MVC
components. We can then easily set them using their corresponding setter methods.
In most cases, you would probably only need to customize one or two of the MVC
components, if any at all.

Plugins
Front Controller plugins act as an easy way for us to extend the dispatch process. If
we look at our earlier diagram, then we can see that there are six extension points in
the dispatch process:

routeStartup

routeShutdown

dispatchLoopStartup

preDispatch

postDispatch

dispatchLoopShutdown

We have already used the routeStartup hook when we created our Initialization
Plugin back in Chapter 1. From the diagram, we can see that routeStartup is the
earliest hook we can extend from, and we chose it because we can apply any setting
we need before the routing and dispatch process starts.

As long as there is an order in which the hooks are called, we have the stackIndex.
The stackIndex is present and so we have control over the order in which plugins
are called when more than one is registered to the same hook. The stackIndex is
stored in ascending order, so lower the stackIndex, the sooner it is called. We have
a good example for this within the Front Controller. By default, the Front Controller
registers the ErrorHandler plugin and this is placed at 100. This is so that the
ErrorHandler is called last.

In order to create a Front Controller plugin, we simply need to subclass the
Zend_Controller_Plugin_Abstract class, and then it is a case of implementing
a concrete method of the hook you want to use. Remember that a single plugin can
hook into one or more extension points. Once we have a plugin, we can register
it using the Front Controller. Let's look at the plugin related methods of the
Front Controller:

registerPlugin(Zend_Controller_Plugin_Abstract $plugin,
Optional Int $stackIndex);: Registers a plugin with the plugin broker.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[53]

unregisterPlugin(Zend_Controller_Plugin_Abstract|string
$plugin);: Unregisters a plugin from the plugin broker. If you supply a
string, then it will unregister all plugins of that class name.
getPlugin(String $class);: Gets a registered plugin of the given class
name. This either returns false if none are found, a single plugin class if
one is found, or an array of plugins if more than one is found.
getPlugins();: Gets all registered plugins.
hasPlugin(String $class);: Checks if a plugin is already registered.

There are, of course, many uses for Front Controller plugins. You should consider
using them when you need to affect the application as a whole such as initialization.
If you need to affect a subset of your application, such as a module, then you would
be better to use an Action Helper. Front Controller plugins are typically used for
tasks such as application initialization, access control, caching, and more. The main
thing to remember is to choose your hook carefully. Different things are happening
throughout the dispatch process and you need to be aware of what you can affect at
each stage.

We will be using a lot of Front Controller plugins in our storefront application.
They can be a little confusing at first, but as you become more familiar with the
dispatch process, you will find that they become a valuable tool in your MVC toolkit.
I would also suggest looking at the source code of the Front Controller, especially the
dispatch method, to see what is happening at each hook.

The Front Controller provides us with a centralized place from which we can control
our MVC components. We have looked at the major ideas and functions of the Front
Controller and you should now have a good idea of what processes are involved.
However, we have not looked at every method available in the Front Controller.
This is because including all of them would just repeat the online reference manual.
Therefore, I suggest that you have a look through the reference manual and
remember that all the setters we have looked at usually have a corresponding
getter. Another good thing to help you learn would be to play with the various
settings and try to really familiarize yourself with the Front Controller.

The router
The router is responsible for translating the request and deciding what module,
controller, and action, is being requested. It also provides us with a way to apply
custom routing schemas to our application, which makes it one of the most useful
MVC components.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[54]

Design
As routing in an application can be very specialized, it stands to reason that the
designs of the router components are very abstract. This enables us, as developers,
to easily create our own heavily specialized routing schemas. However, the default
routing components should serve most requirements. Remember, this is the place to
start if you have non-standard routing needs.

The router actually has two parts, the router and the route. The router is responsible
for managing and running the route chain, and a route is responsible for actually
matching the request against the predefined rule of the route. This means that we
have one router to many routes.

The routing components are based from two main interfaces, Zend_Controller_
Router_Interface and Zend_Controller_Router_Route_Interface. The two
abstract classes Zend_Controller_Router_Abstract and Zend_Controller_
Router_Route_Abstract implement these interfaces and provide us with our base
functionality. If we need to create our own router, or route at the very least, then we
need to implement the corresponding interfaces or subclass the abstract classes.

The router is located at the start of the dispatch process, and route calculation
happens only once. Routes are calculated before any controller actions are
dispatched (see the Dispatcher section for details). Once routes are calculated, the
Router will apply the routing information to the Request object. This information
will be what module, controller, and action call plus any extra user parameters.
The Dispatcher then uses this information to dispatch the correct action.

The router also has two Front Controller Plugin hooks associated with it,
routeStartup and routeShutdown. These are called before and after routes
are calculated respectively.

Defaults
By default, the router used is the Zend_Controller_Router_Rewrite router,
which is an HTTP based router. This means that it expects the request to be an
HTTP request and that the request object used is Zend_Controller_Request_Http
(or subclass of).

The default route used is the Zend_Controller_Router_Route_Module, which gives
us the standard route that we looked at in Chapter 1. This route is stored using the
default index in the routers route chain array.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[55]

Using the router
Using the router can either be complex or simple depending on our needs.
Obviously, if we have a very complex set of routing needs, then it will create a
complex route setup. However, using the router is very simple. You generally create
a router to manage your routes, then you add routes to it, and then you're done.

The route types available to us are as follows:

Zend_Controller_Router_Route

Zend_Controller_Router_Route_Static

Zend_Controller_Router_Route_Regex

Zend_Controller_Router_Route_Hostname

Zend_Controller_Router_Route_Chain

Default Routes

The most basic route we can use is the Zend_Controller_Router_Route, which
is the general-purpose route and provides easy use but less fine-grained control.
For more fine-grained control, we can use the Zend_Controller_Router_Route_
Regex route. This gives us the full power of PHP's regex library. The other routes
are slightly more specialized, and we will look at all the route types in just a
second. First, let's look at the Router and how we interact with it. The router we use
throughout this section is the Zend_Controller_Router_Rewrite router, which is
the default router.

Before we can add any routes, we need to first get an instance of a router class.
In order to do this, we can either create a new router using new, or we can get the
default router from the Front Controller.

$router = new Zend_Controller_Router_Rewrite();

or

$router = $front->getRouter();

Once we have the router, we can then add some routes as follows:

$router->addRoute('myRoute',$route);
$router->addRoute('myRoute1',$route);
...

We also have the option to add routes from a Zend_Config_Ini or
Zend_Config_Xml object like:

$config = new Zend_Config_Ini('/path/to/config.ini', 'production');
$router->addConfig($config, 'routes');

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[56]

When adding routes, beware of the order in which you add them.
Routes are matched in reverse order in relation to the order they are
registered. This means that you should put most generic at the top
and least at the bottom.

The router also provides us with various other methods to get and set information
contained within it. Some important ones to note are as follows:

addDefaultRoutes() and removeDefaultRoutes(): These add or remove
the default routes. By default, the router will add the default routes.
assemble(): It is used to help with the creation of URI's based upon a given
route. This is very useful if you need to create links to your routes. This
method is used by the URL View Helper to produce its links, which we
looked at in Chapter 1.
getCurrentRoute() and getCurrentRouteName(): If we ever
need to get the route or route name that was matched from another
part of our application, then we can use getCurrentRoute() and
getCurrentRouteName().
getRoute(), getRoutes(), hasRoute(), and removeRoute(): These are
used to manage our routes.

All router setup can either occur within your bootstrap or, better still, within your
initialization plugin. Now that we have an idea of how to set up the router, let's look
at the route types and how we use them.

Zend_Controller_Router_Route
The standard route Router_Route actually provides a very powerful way to route
requests and is very easy to use. In order to create a new Router_Route, we simply
need to instantiate it and then add it to the Router.

$router = new Zend_Controller_Router_Rewrite();

$route = new Zend_Controller_Router_Route(
 'product/:ident',
 array(
 'controller' => 'products',
 'action' => 'view'
)
);
$router->addRoute('product', $route);

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[57]

In our example, we are trying to match URL's that point to a single product,
something like http://domain.com/product/chocolate-bar. In order to do
this, we have passed in two arguments to the Zend_Controller_Router_Route
constructor. The first argument is the path to match and the second is the Action
Controller to route to. The Router_Route constructor also takes a third argument
for regex matches, which we will look at in a second.

The path uses a special markup to tell the route how to match each segment of the
path. This markup has two markers, as shown below, to help us create our route:

:

*

Colon (:) is used to specify that the segment contains a variable that we want to
pass into our Action Controller as a parameter. The parameter it creates will have
the name of the preceding text to the colon. In our product example, this would be
ident, so http://domain.com/product/chocolate-bar would create a parameter
called ident that contains the text chocolate-bar. We could then access this in our
Action Controller by using $this->_getParam('ident');. We can also set default
values for our route variables by adding them to the second arguments array. For
example, if we wanted to default ident to unknown, then we would create out
route like:

$route = new Zend_Controller_Router_Route(
 'product/:ident',
 array(
 'controller' => 'products',
 'action' => 'view',
 'ident' => 'unknown'
)
);

Asterisk (*) is used as a wildcard and means that all URL segments after it will be
stored as wildcard data. In our example, if we had the path /product/:ident/* and
the URL http://domain.com/product/chocolate-bar/test/value1/another/
value2, then it would work just like above, but all the segments past chocolate-bar
would be made into parameters. So this would give us the following results:

ident = chocolate-bar

test = value1

another = value2

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[58]

This behavior is just like the standard route in which it creates parameters from
pairs of segments. Remember that they have to be pairs in order to be made into
parameters, so /test/value1/ would not set another parameter.

Like our markers, we have the static parts of the route. These are the parts that
are simply matched in order to satisfy the route. In our example, the static part
is product.

As you can see, Router_Route provides us with great flexibility to our routing.
However, there is more like regex matches. Regex matching enables us to put extra
restraints on the way the route is matched by using regular expressions. The regex
matching uses PHP's preg engine.

In our product example, we are getting the ident (identity) of the product the user
wishes to view. This is then used to search the database and get the correct product.
However, if we were given the requirement that the system can accept product ID
numbers as well as product ident strings, then we can use routes to achieve this.

Consider the following two routes:

$router = new Zend_Controller_Router_Rewrite();

$route = new Zend_Controller_Router_Route(
 'product/:ident',
 array(
 'controller' => 'products',
 'action' => 'view'
),
 array(
 // match only alpha, numbers and _-
 'ident' => '[a-zA-Z-_0-9]+'
)
);

$router->addRoute('productident', $route);

$route = new Zend_Controller_Router_Route(
 'product/:id',
 array(
 'controller' => 'products',
 'action' => 'view'
),
 array(
 // match only digits
 'id' => '\d+'
)
);

$router->addRoute('productid', $route);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[59]

In order to achieve our requirement, we create two routes. The first route is the same
as our earlier example except that we have added a regex requirement to match ident
of [a-zA-Z-_0-9]+;. This requirement is that the ident must be alphanumeric. Our
second route tries to match an ID number of a product. We have used \d+ to match
only digits.

With these routes added to the router, if we now browse to
http://domain.com/product/12 the id parameter is set and if we browse
to http://domain.com/product/chocolate-bar the ident parameter is set.

When using regular expression matches, remember that the route will add ^ and $ to
the front and end of your regex pattern. Also, the delimiter that the route uses is #.
Therefore, if you are matching the # character, then you must escape it. These rules
also apply to the Router_Route_Regex route type.

Zend_Controller_Router_Route_Static
If we do not need to have any variables matched, then instead of using the
Router_Route we can use the Router_Route_Static. This route matches a
static URL, and to create a static route we just need to instantiate it like before:

$route = new Zend_Controller_Router_Route_Static(
 'products/rss',
 array(
 'controller' => 'feed',
 'action' => 'rss'
)
);
$router->addRoute('rss', $route);

As you can see, Router_Route_Static route is just a very basic version of the
Router_Route. In our example, http://domain.com/products/rss now maps
to the feed controller and the rss action.

Zend_Controller_Router_Route_Regex
The routes we have looked at so far do a very good job of basic routing. However,
they have their limitations. This is where the Router_Route_Regex comes in. This
route gives us the full power of PHP's preg library, but this makes writing routes
more complex. Even though they are a little more complex to use, I still use them
for most of my routing as they are slightly faster than Router_Route.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[60]

To start, let's convert our product example to use Router_Route_Regex:

$route = new Zend_Controller_Router_Route_Regex(
 'product/([a-zA-Z-_0-9]+)',
 array(
 'controller' => 'products',
 'action' => 'view'
)
);
$router->addRoute('product', $route);

You can see that we have now moved our regex pattern into the path. This
route should now match an alphanumeric ident for us just like in our example.
However, how is the ident parameter created? Well, if we use this route the
parameter set will be 1 (one). Therefore, to access it in a controller we would enter
$this->_getParam(1);. Ok, so that's ugly, we can't be bothered to remember
numbers! To get around this problem, we need to provide a variable to match
mappings. This is done in the third argument as shown below:

$route = new Zend_Controller_Router_Route_Regex(
 'product/([a-zA-Z-_0-9]+)',
 array(
 'controller' => 'products',
 'action' => 'view'
),
 array(
 1 => 'ident'
)
);
$router->addRoute('product', $route);

Here, we have simply mapped 1 (one) to the ident string. When this route is now
matched it will set the ident parameter for us. If you are not very familiar with
regular expressions, then the numbering of the matches comes from the capturing
groups of the expression. Capturing groups are marked out by parentheses, so to
capture more than one variable you simply need to enclose each one in parentheses.
If you have no idea about capturing groups, I would suggest reading about them
before using the regex route.

Another side effect of using the regex route is that other Zend Framework
components such as the URL View Helper can't translate the regex pattern back to a
URL. To get around this, we can provide a reverse rewrite for our route. This rewrite
works just like sprintf().

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[61]

To add the rewrite, we add the following as the fourth argument:

$route = new Zend_Controller_Router_Route_Regex(
 'product/([a-zA-Z]+)/([a-zA-Z-_0-9]+)',
 array(
 'controller' => 'products',
 'action' => 'view'
),
 array(
 1 => 'category'
 2 => 'ident'
),
 'product/%s/%s'
);
$router->addRoute('product', $route);

Now that we have added the reverse rewrite, our route can now be easily linked.
If you look at the route above, we have actually added in a category parameter to
capture. We then give the reverse rewrite product/%s/%s, so the route can inject the
parameters for us. Remember to read the sprintf() documentation if you have not
used it before.

As this is a fairly complex set of functionality, let's finish it off with another example.

Imagine that we have been busy refactoring our old storefront application so that it
uses the Zend Framework. We have decided that we want our products to have nice
search engine friendly URLs. However, the products have already been indexed, and
our managers don't want to lose these valuable links. To achieve this, we decide to
use the power of the router.

Our old URL's have this format:

http://storefront/products.php/category/{categoryID}/product/
{productID}

And our new URL's will have this format:

http://storefront/product/{categoryName}/{productID}-{productIdent}.
html

So to start, we want to redirect the requests for the old URL's to the new ones. We do
this by using the route:

$route = new Zend_Controller_Router_Route_Regex(
 'products.php/category/(\d+)/product/(\d+)',
 array(
 'controller' => 'products',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[62]

 'action' => 'old'
),
 array(
 1 => 'categoryID',
 2 => 'productID'
)
);

This route will now match the old URLs and extract the category and product IDs
from them. Since the route maps to the old action of the products controller to
redirect, we could do something like:

public function oldAction()
{
 $catID = $this->_getParam('categoryID');
 $productID = $this->_getParam('productID');

 // model finds the product ident and category names
 //....
 $ident = 'coolproduct';
 $catName = 'coolstuff';

 $this->_redirect('/product/' . $catName . '/' . $productID . '-'
 . $ident . '.html',
 array('code' => 301)
);
}

The old action now takes the matched parameters from the route and uses them to
redirect the user to the new URL using a 301 redirect. I have left the database calls
out for brevity. Also, remember that we should not add request variables directly to
a redirect as it may compromise security. We have done this with the productID in
our example.

Now that we have our old URLs mapping to the new ones, let's create the route for
our new URLs.

$route = new Zend_Controller_Router_Route_Regex(
 'product/([a-zA-Z-_0-9]+)/(\d+)-([a-zA-Z-_0-9]+).html',
 array(
 'controller' => 'products',
 'action' => 'view'
),
 array(
 1 => 'categoryIdent',
 2 => 'productID',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[63]

 3 => 'productIdent'
),
 'product/%s/%d-%s.html'
);

This route will match our new URLs. The regex contains three capturing groups
for category name, product ID, and product ident. We are assigning these to the
categoryIdent, productID, and productIdent parameters respectively. Also, we
provide a reverse rewrite string so that we can link to this route. The format of this
string uses the sprintf() syntax so our string says product/{string}/{digit}-
{string}.html and parameters are added left to right.

Having mapped our old and new URLs successfully, we can now carry on with
looking at the other route types. The Router_Route_Regex is a very powerful route,
but does require a good knowledge of regular expressions to get the full benefit from
using it. I would suggest having a good play with this route, as I am sure you will
find it more than useful.

Zend_Controller_Router_Route_Hostname
Router_Route_Hostname unsurprisingly handles hostname routing. A common
use case for this is matching usernames that are in the sub domain segment of the
hostname. For instance, if we have our public facing web site on www.domain.com
and our registered users have account URL like user1.domain.com, then we can use
the Router_Route_Hostname route to rewrite the requests to the account controller.

$route = new Zend_Controller_Router_Route_Hostname(
 ':username.domain.com',
 array(
 'controller' => 'account',
 'action' => 'index'
),
 array(
 // Match subdomain excluding www.

 'username' => '(?!.*www)[a-zA-Z-_0-9]+'

)
);
$router->addRoute('account', $route);

As you can see, Router_Route_Hostname works in much the same way as
Router_Route. We can get parameters, set defaults, and use regex matches. The
regular expression we use here is important as we ignore the www sub domain by
adding (?!.*www). If we do not do this, then all requests would go to the account
controller. We can also expand this to ignore multiple subdomains by using
(?!.*www|blog), which would ignore www and blog subdomains.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[64]

If we run this route, then it will not give us exactly what we want. In its current form,
all requests that contain a username are routed to the index action of the account
controller. This would be OK if we did not have multiple account actions, but this is
very unlikely. To get around this, we need to chain our route, which brings us nicely
onto our next route Router_Route_Chain.

Zend_Controller_Router_Route_Chain
The router manages a chain of routes that it runs and tries to match. Internally, this
chain is a simple PHP array. When the routers route() method is called, this array
is looped over and each route tries to get a successful match. But what if we need
to do further routing/matching after a route has been matched? This is where
Router_Route_Chain comes in. By using the chain route, we can easily stack routes
together. This can be a little confusing as we can have lots of routes connected to
other routes. The diagram below shows an example of a routing chain, which utilizes
route chaining:

$router->addRoute();

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route

Router_Route_Chain

Router_Route_Chain Router_Route_Chain

$router->route();

The diagram shows how routes are added in a downward direction and then called
in reverse order. Also, we can see that the Router_Route_Chain routes contain more
routes that do further matching for us. Route chains are called in the order they are
chained together, unlike the root chain in the router.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[65]

This is all a bit abstract at the moment, so let's go back to our hostname example and
fix the problem we had with the route by only going to one controller action.

$actionRoute = new Zend_Controller_Router_Route(
 ':action/*',
 array(
 'action' => 'index'
)
);

$route = new Zend_Controller_Router_Route_Hostname(
 ':username.domain.com',
 array(
 'controller' => 'account',
 'action' => 'index'
),
 array(
 'username' => '(?!.*www)[a-zA-Z-_0-9]+'
)
);
$router->addRoute('account', $route->chain($actionRoute));

We had the problem earlier where if one of our users visits user1.domain.com or
user1.domain.com/profile, then they would be routed to the same action. This
was not at all useful. By adding a route chain, we can now route the user to the
correct actions. So what is happening?

user1.domain.com is matched using the account route
The action parameter is then matched and extracted using the action route
The user is routed to the correct action

To add a route chain, we do not instantiate a Zend_Controller_Router_Route_
Hostname object like we do with the other routes. Instead, we use the chain()
method of the route we want to chain from.

Zend_Config
When we have a lot of routes, managing them can become tricky. To help with
this, we can load multiple routes using the routers addConfig() method. This
method allows us to add routes contained in a Zend_Config instance. Zend_Config
can consume either XML or ini files. Choose whichever format you are most
familiar with.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[66]

Let's convert some of our example routes into an ini file:

[production]

routes.rss.type = "Zend_Controller_Router_Route_Static"
routes.rss.route = "products/rss"
routes.rss.defaults.controller = feed
routes.rss.defaults.action = rss

routes.oldproducts.type = "Zend_Controller_Router_Route_Regex"
routes.oldproducts.route = "products.php/category/(\d+)/product/(\d+)"
routes.oldproducts.defaults.controller = products
routes.oldproducts.defaults.action = old
routes.oldproducts.map.categoryID = 1
routes.oldproducts.map.productID = 2

routes.product.type = "Zend_Controller_Router_Route_Regex"
routes.product.route = "product/([a-zA-Z-_0-9]+)/(\d+)-([a-zA-Z-_0-
9]+).html"
routes.product.defaults.controller = products
routes.product.defaults.action = view
routes.product.map.categoryIdent = 1
routes.product.map.productID = 2
routes.product.map.productIdent = 3
routes.product.reverse = "product/%s/%d-%s.html"

routes.user.route = "user/profile/:username/*"
routes.user.defaults.controller = user
routes.user.defaults.action = profile
routes.user.defaults.username = "Unknown"
routes.user.reqs.username = "([a-zA-Z-_0-9]+)"

Once we have created the ini file, we can then load it into the router.

$config = new Zend_Config_Ini('config.ini', 'production');
$router = new Zend_Controller_Router_Rewrite();
$router->addConfig($config, 'routes');

This will now load all of our routes into the control for us. Adding routes this way
is very convenient. However, beware of an overhead while loading and parsing the
ini file. If we have large numbers of routes, then it would be best to cache the ini
file once Zend_Config has parsed it. This is easily done using Zend_Cache.

Another slight drawback is that you cannot currently add chains using this method,
though you probably would never have large amounts of chains anyway.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[67]

The router performs a very important function in our applications and I hope this
has shown you its power and inspired you into ways you can use it for yourself.
We have looked at all the major aspects involved in routing from managing routes
to fulfilling complex functional requirements using routes. Once again, I would
suggest playing with some routes on your own to really get a good grasp of what
can be achieved.

The Dispatcher
The Dispatcher is responsible for actually calling our Action Controllers. By its
nature, the Dispatcher is more of an internal component of the MVC components
and the Front Controller handles most interaction with it. However, there are some
important processes involved that are helpful to understand.

Design
As the Dispatcher is an internal component, its design is fairly straightforward.
Its main responsibility is to dispatch the correct Action Controllers action. This
means that it has to first load the Action Controller classes, instantiate them, and
then call the action. As it has to do all the loading and calling of Action Controllers,
the Dispatcher holds all the settings or rules that govern the naming of MVC
components. These settings include things like the default module, controller,
and action names.

The Dispatcher, like the other MVC components, does provide an
interface and abstract class that we can use to create our own or extend
the Dispatcher. These are Zend_Controller_Dispatcher_Interface and
Zend_Controller_Dispatcher_Abstract.

Request dispatching
It is important to understand how requests are dispatched. This process is known
as request dispatching. When the Dispatcher dispatches a request, it extracts the
module, controller, and action names from the request object and then calls the
specified Controller Action. All dispatching happens during the Front Controllers
dispatch loop. Therefore, we have three components involved in the actual
dispatching of a request. They are the Front Controller, the Request Object,
and the Dispatcher.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[68]

Let's take a look at the steps involved:

1. Front Controller starts the dispatch loop.
2. Front Controller calls Dispatcher.
3. Dispatcher receives the Request object.
4. Dispatcher tries to get the Action Controller name from the Request object.
5. Dispatcher tries to load the Action Controller.
6. Dispatcher tries to instantiate the Action Controller.
7. Dispatcher tries to get the action name from the Request object.
8. Request flag dispatched set to true.
9. Dispatcher tries to dispatch the Action Controller's action.
10. Front Controller checks the Request objects dispatched flag. If it is not true,

then it starts the loop again.

The Request object's dispatched flag is very important and controls when the
dispatch loop stops. It also enables us to change or add actions to be called. To
demonstrate, let's have a look at some examples using the dispatched flag.

The most basic example is that of the _forward() method in
Zend_Controller_Action. We looked at this in Chapter 1, and it enables
us to forward the request to another action from within an action that is being
called. For this example, we have two modules named default and product.
Both these modules contain an IndexController.

Default modules IndexController

class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $this->_forward('index', 'index', 'product');
 }
}

Product modules IndexController

class Product_IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {}
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[69]

So now if we request the default modules index controller's index action, it will
forward the request to the product modules index controller's index action. But
what is happening? When the request comes in, the _forward() call sets the module,
controller, and action names in the request object to product, index, and index
respectively. It also sets the dispatched flag to false, which means that the Front
Controller will restart its loop and the Dispatcher will dispatch the new request.

Just to clarify, here is an example of forwarding a request without using the
_forward() method.

class IndexController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $request = $this->getRequest();

 $request->setModuleName('product')
 ->setControllerName('index')
 ->setActionName('index')
 ->setDispatched(false);
 }
}

The example above does exactly the same as the previous example using
_forward(), but we directly augment the request instead.

Using the Dispatcher
Now that we know how request-dispatching works, let's look at some of the ways
in which we can interact with the Dispatcher. Nearly all the interactions with the
Dispatcher are to affect its default behaviors. If we look at some of its main setters,
then we notice that we have already seen most of these in the Front Controller:

setDefaultAction (string $action)

setDefaultControllerName (string $controller)

setDefaultModule (string $module)

So when we use these methods on the Front Controller, they simply proxy to
their corresponding Dispatcher method. With this in mind, we won't worry about
recapping over what these methods actually do. However, there is one method that
is important to look at. This method is setParam().

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[70]

There are situations where we want to pass an object or variable to all of our Action
Controllers so that we can access them globally. Normally, we can do this through
the Front Controller like this:

$front->setParam('myGlobal','globalvar');

However, there is a special situation that can catch us out. This is if we are trying to
set parameters after the Front Controllers dispatch() method is called. So this could
be within a Front Controller plugin, Action Helper, and so on. A good example of
this is our Initialization plugin. If we need to set a Dispatcher parameter, then we
need to directly interact with it.

Inside a Front Controller Plugin we add the following code:

public function routeStartup(Zend_Controller_Request_Abstract
 $request)
{
 $front = Zend_Controller_Front::getInstance();
 $dispatcher = $front->getDispatcher();

 $dispatcher->setParam('myGlobal', 'glboalvar');
}

Now, from our direct interaction with the Dispatcher, our global parameter is
successfully set. Technically, the reason why using $front->setParam() does not
work is because when $front->dispatch() is called the parameters are passed into
the Dispatcher from the Front Controller before the routeStartup event is fired (and
before any subsequent events). Therefore, any Front Controller parameters set after
this point are not set in the Dispatcher and Action Controllers.

The Dispatcher and the dispatching process is an important part of the Zend
Frameworks MVC implementation and allows great control over how dispatching
occurs in our application. Now let's move on and look at the Request object.

The Request object
We have already used the Request object quite a bit. It provides us with a way of
encapsulating a request in a way that our MVC components can understand and
interact with. Without it, our application would ultimately do anything.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[71]

Design
Requests come in many ways and the design of the Request object reflects this.
All Request objects are based upon the Zend_Controller_Request_Abstract.
This abstract class provides us with the base functionality that our other MVC
components need to operate. This base functionality includes setting module,
controller, and action names that are to be dispatched. It also includes setting
request parameters and setting the dispatch status.

The Request objects design being abstract means that we can easily create our
own request types by subclassing the abstract class, and it also means that the
Zend Framework is not locked into any one environment. So, we can use the Zend
Frameworks MVC components in an HTTP, CLI, or any specialized environment
we like.

Defaults
The default Request object used by the Zend Framework is Zend_Controller_
Request_Http, which is registered to the Front Controller by default. The HTTP
Request object is designed for the HTTP environment, and therefore contains extra
properties such as $_GET and $_POST data. We also have the following Request
objects available to us:

Zend_Controller_Request_Simple

Zend_Controller_Request_Apache404

The Simple Request object is a very basic request type and mainly provides
the same functionality as the abstract class. This request type can be used for
CLI MVC operation.

The Apache404 Request object is actually an extension of the HTTP Request object
and provides HTTP functionality for two edge use cases where Apache 404 handler
is used instead of mod_rewrite or where the PT flag is used in rewrite rules.

Using the Request object
The Request object is accessible through the getRequest() method, which is
available in the Front Controller and the Action Controller. The Request object is
either automatically instantiated by the Front Controller, or set by the developer.

To get the Request object from the Front Controller, we can use the
getRequest() method:

$front = Zend_Controller_Front::getInstance();
$request = $front->getRequest();

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[72]

If we need to use a custom Request object, we can set it by using the
setRequest() method.

$front = Zend_Controller_Front::getInstance();

$myRequest = new My_Controller_Request_Custom();
$request = $front->setRequest($myRequest);

If we need to set a Request object, then we need to set it on,
or before, the routeStartup stage of the dispatch.

Once we have the Request object, most likely we will need to get or set some
information to it. To do this, the Request object provides us with various getters
and setters. Some of the most important of these are mentioned as follows:

getModuleName() and setModuleName()
getControllerName() and setControllerName()
getActionName() and setActionName()
isDispatched() and setDispatched()

All of these methods get or set information used by the Dispatcher to determine
what should be dispatched. We have already looked at this when we used these
methods to forward a request from inside a controller action in the Dispatcher
section. These methods are very important as they give us control over the
dispatching of Action Controllers.

The Request object provides us with a way to store request information through its
parameters. The methods for accessing parameters are as follows:

getParam() and setParam()
getParams() and setParams()
getUserParams() and getUserParam()

These methods enable us to store information about the environment or request.
There is an important difference here between user parameters and environment
parameters. User parameters are set directly on the Request object, meaning that
they are set using setParam() or setParams(). Other parameters are set from the
environment and are usually automatically created by the request.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[73]

This becomes very important when dealing with the HTTP Request object. An HTTP
request contains a lot of extra information such as post and query data. To keep
things tidy, the HTTP Request object separates these environment parameters from
the other Request object parameters. Therefore, when we use getUserParam() or
getUserParams(), we are only getting parameters that have been set directly on
the Request object such as by the router or ourselves. When we use getParam() or
getParams(), we are getting parameters from the entire pool of user parameters and
environment parameters. We will look at this behavior further when we look at the
HTTP Request specific methods.

The HTTP Request object
As the HTTP Request object is used by default, and is the most commonly
used request type, it is important to be aware of the HTTP specific functionality
it provides.

When we access data using the HTTP Request object, we have many options and
can access either environment data such as $_GET and $_POST or user parameters
such as the data sent from the routers matches. There are rules that govern the
access data that we need to be aware of. The main rule is that when accessing data
through getParam(), getParams(), or the magic getter (__get) functionality, the
data returned is an aggregate of all the data the Request contains. This means that
the Request object holds a stack of data that it queries in a specific order to return the
requested data. Therefore, we need to be careful when using these for where the data
is coming from. There are, of course, ways to get data from each specific data type,
which we will look at in a second.

First, let's look at accessing data using the magic getter functionality. If you are not
aware of how getters and setters work in PHP5, please check the manual before
reading this section.

When we access data using the magic getter functionality, the Request object
searches data in the order mentioned below:

User parameters
$_GET

$_POST

$_COOKIE

$_SERVER

$_ENV

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[74]

As you can see, this is a large stack of information that is queried and we need
to be aware of the order when we use this functionality so that we get the correct
data returned.

The other way of accessing data is using getParam() and getParams() methods.
These work in a similar manner as the magic getter, but they query from a smaller
stack of data types. Also, this behavior is customizable by us and so it is a lot more
flexible than the magic getter. By default, the stack of data and the order these
methods use is as follows:

User parameters
$_GET

$_POST

To customize this, we can set the sources using the setParamSources() method.
Using this, we can only take away from, or add to, the existing stack. We cannot
remove User parameters. This means we cannot add things like $_SERVER or
change the order in which they are queried.

To change the parameter sources, simply pass in an array containing the keys like:

$request->setParamSources(array('_GET'));

This would then make getParam() and getParams() query user parameters and
then $_GET.

Obviously, there are times when we must be certain where the data is coming from.
For this, the Request object provides various getters for each data type mentioned
as follows:

getQuery(): $_GET
getPost(): $_POST
getCookie(): $_COOKIE
getServer(): $_SERVER
getENV(): $_ENV
getRawBody(): php://input (RAW post data)
getHeader(): Gets a HTTP header

With all these methods and the exception of getRawBody() and getHeader(), we
simply pass in the variable name that we want to retrieve. We can also pass in a
second argument that specifies a default value if the variable is not found. By default,
they will return null if the variable is not found.

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[75]

Other than data accessors, the HTTP Request object provides us with many
convenient methods that are mainly for checking the environment.

The environmental checking methods provided are as follows:

isDelete (): Is the HTTP Request method a DELETE?
isFlashRequest (): Is the user agent Shockwave Flash?
isGet (): Is the HTTP Request method a GET?
isHead (): Is the HTTP Request method a HEAD?
isOptions (): Is the HTTP Request method an OPTIONS?
isPost (): Is the HTTP Request method a POST?
isPut (): Is the HTTP Request method a PUT?
isSecure (): Is the request over HTTPs?
isXmlHttpRequest (): Does the X_REQUESTED_WITH header equal
XMLHttpRequest?

The environmental checking methods are very useful for quickly checking the
request containing certain types of information. All of them return Boolean values.
Most of these also have getter methods associated with them, which they used to do
the checking.

The Request object, and the HTTP Request object, both have many methods to help
us access information about the request. We have not covered all of the methods
available, but have covered the core functionality, which we need to use the Request
objects. I would strongly advise you to look over the API reference or check the
source code if you want to know the available method.

The Response object
We are down to the final component, and the final part of the dispatch process. The
Response object is the counterpart of the Request object. It acts as a container for all
the data that is needed to successfully response to a request.

Design
Just like requests, responses come in many ways. All Response objects are
based upon the Zend_Controller_Response_Abstract. This provides the base
functionality we require to form a Response to a request. The Response is available
to us throughout the dispatch process and we add to it during dispatching. It
can contain headers, exceptions, and other data such as the HTML that is used to
respond to a request.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[76]

Another similarity to the Request object is that the Response is context sensitive,
meaning that we can have different response types for different environments.
Again, this means that the MVC components can be used in CLI, HTTP, or
any specialized environment. We can easily create our own response types by
subclassing the abstract class and implementing our own requirements.

Defaults
By default, the Zend Framework uses the HTTP Response object Zend_Controller_
Response_Http. The HTTP Response object, like the HTTP Request object, is for
use in an HTTP environment. With the HTTP Response object, we also have the CLI
response object Zend_Controller_Response_Cli available to us. This can be used
in a command line environment.

Using the Response object
The Response object handles three types of data. They are exceptions, headers,
and response body. The response body is anything we want to return to the request
(For example: The user requesting the web page) be it HTML, text, XML, binary
image data, and so on.

The response body is segmented to allow easy management of the response body
and control over the order in which this appears. To set response body, we can use
the setBody() method.

$response = new Zend_Controller_Response_Http();
$response->setBody('<h1>Default Body</h1>');

When we do this, the response will write the data we provided to the default
segment of the Response object, and usually this is from a View. It will also
overwrite any data currently stored in the default segment and remove all
other named segments.

This gives us a response body like:

array(
 'default' => '<h1>Default Body</h1>'
);

When using setBody(), if we pass in a second argument, then we can specify a
named segment to add the data to.

$response = new Zend_Controller_Response_Http();
$response->setBody('<h1>Default Body</h1>');
$response->setBody('<p>More body</p>', 'test');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[77]

This gives us a response body like:

 array(
 'default' => '<h1>Default Body</h1>',
 'test' => '<p>More body</p>'
);

As we can see, this segment is appended to the response body array. If we send the
response, then it will produce:

<h1>Default Body</h1><p>More body</p>

Obviously, we need more control over how the response is ordered than just being
able to add to it. The Response object provides the following methods to allow this:

append (string $name, string $content)

appendBody (string $content, null|string $name = null)

prepend (string $name, string $content)

insert (string $name, string $content, string $parent = null,
boolean $before = false)

Both append() and prepend() create new segments by either appending or
prepending them to the response body array. The appendBody() method will
actually append data to a segment, and insert() allows us to create segments
at specific points in the response body.

Consider the following example:

$response = new Zend_Controller_Response_Http();
$response->setBody('<h1>Default Body</h1>');
$response->setBody('<p>More body</p>', 'test');
$response->appendBody('<p>append to test segment</p>','test');
$response->prepend('header','<html><body>');
$response->append('footer','</body></html>');
$response->insert('extra','<h2>Extra body</h2>','default', false);
$response->insert('more', '<p>Before footer</p>', 'footer', true);

This example would produce a response body array of:

array(
 'header' => '<html><body>',
 'default' => '<h1>Default Body</h1>',
 'extra' => '<h2>Extra body</h2>',
 'test' => '<p>More body</p><p>append to test segment</p>',
 'more' => '<p>Before footer</p>',
 'footer' => '</body></html>',
);

•

•

•
•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[78]

We can see that the Response object gives us great control over where body segments
are placed and what data is contained within them. In the example, we are able to
organize the segments event, though they are added in a different order to the way
we want them to appear. This type of segment organization could happen anywhere
during the dispatching process.

We can also manage headers using the Response object. There are many getters
and setters available to manipulate headers. The main ones are setHeader(),
setRawHeaders(), and setResponseCode(). When using the Zend Framework,
we should only use the Response object to send headers, but should never send
headers manually.

Here is an example of setting headers in an Action Controller:

public function indexAction()
{
 $response = $this->getResponse();

 if ($response->canSendHeaders()) {
 $response->setHeader('Content-Type', 'text/html');
 $response->setRawHeader('HTTP/1.1 404 Not Found');
 }
}

In our example, we first check if the headers have already been sent, and then we
add two headers to the response. The first header uses setHeader(), which takes a
pair of arguments, header key, and header value. We also force it to overwrite the
current Content-Type header. The second uses setRawHeader(), which takes only one
argument, the header string. The Response object's header API also provides methods
for cleaning and retrieving header values such as cleanHeaders() and getHeaders().

Finally, we have exceptions. The Response object provides accessors to various
exceptions that are thrown during the dispatching process. It also acts as a good
place for us to store our own application exceptions.

We can set register exceptions with the response using the setException() method.

An Action Controller

public function indexAction()
{
 try{
 // model throws an exception...
 throw new My_Model_Exception('Model error', 500);
 }catch(My_Model_Exception $e){
 $this->getResponse()
 ->setException($e);
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 2

[79]

Here we first throw an exception that gives the error Model error and sets the
exception code to 500. We then catch this and set the thrown exception in the
response. This is then stored so it can be used later. In this case, if we had an
ErrorController setup like in our Hello Zend application, then we could access the
exception in that controller to display to the user. It also helps as we can use the
exception more than once so that logging can be separated.

Let's look at how we can retrieve our example exception:

$response = $this->getResponse();

// get by code

if ($response->hasExceptionOfCode(500)){
 $errors = $response->getExceptionByCode(500);
}

// get by Message

if ($response->hasExceptionOfMessage('Model error')){
 $errors = $response->getExceptionByMessage('Model error');
}

// get by type

if ($response->hasExceptionOfType('My_Model_Exception')){

 $errors = $response->getExceptionByType('My_Model_Exception');
}

// get all exceptions

if ($response->isException()){
 $errors = $response->getExceptions();
}

Here we are using the getter's corresponding "has" methods to first check if the
exception exists. Then, we are retrieving the actual exceptions. Remember that all
of the exception getters can return more exception. We will look at the best ways to
handle exceptions when we build our Storefront application.

The Response object provides us with a great way to manage complex output, and it
helps us handle body content, headers, and exceptions. We will look at more ways in
which we can use the Response object throughout this book.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Zend Framework MVC Architecture

[80]

Summary
Ok, take a deep breath, we did it! I know it was a long one and I am sure your head
might be spinning, but trust me, it's worth it. In this chapter, we have looked at
how the Zend Framework handles requests using the dispatch process. It is very
important that we understand this as it forms the basis of the MVC architecture and
a good understanding will help us solve problems, as well as inform us about the
ways in which we can customize MVC architecture for our own requirements.

We also looked at each of the individual MVC components that make the dispatch
process work. This included the Front Controller, Router, Dispatcher, Request
object, and the Response object. For each of these components, we looked at how
they were constructed, the design patterns they use, and the common ways in which
we can use them. Again, it is very important to understand the workings of these
components so that we can get the most out of them.

We have now covered all the major MVC components and looked at how they
work together. With this knowledge, we can now get the most out of the Zend
Framework. Obviously, there is a lot to take in from this chapter, but we will be
recapping and building on the principles we have learned here throughout the rest
of the book. So with the theory out of the way, we can now start to design and build
our storefront application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup
It is time to start building our main application, the Storefront. Over the rest of the
book, we will be looking at the process of building a "real life" application. To begin
with, we will create a simple Storefront, and then will start to refactor and add more
functionality. This chapter lays the foundations of our Storefront application from
which we will build in all the functionality that we require. This includes:

Storefront requirements
Basic application structure
Bootstrapping with Zend_Application
Global layouts
Application build
Installing the Storefront database
Application configuration
Logging and debugging

By the end of the chapter, we will be ready to dive in deeper and start creating the
Storefront components.

Getting started
Before we start, we will need some extra software other than the Zend Framework.
As we are going to be building a "real life" application, we thought it right to use
some real world tools. These are mainly testing and build tools. This will also help
us understand some of the principles behind the Zend Framework, as these tools are
used to develop the framework's code-base.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[82]

Software requirements
To follow the examples, we will need the following software installed:

PHP PEAR
PHPUnit (http://phpunit.de)
XDebug (http://www.xdebug.org)
Apache Ant (http://ant.apache.org)

For installation instructions, please see the Appendix, Installing Supporting Software.
Once we have these installed, we can quickly set up and test our examples.

Coding standards
All the examples in this book follow the Zend Framework's coding standards.
These standards can be found at http://framework.zend.com/manual/en/
coding-standard.html. Please take time to familiarize yourself with the coding
standards; also feel free to submit errata if I break them myself.

As we are going to be building an example application that uses the
Zend Framework, there will be times when we have to use non-Zend
Framework code. This code is mainly to deal with the Model of the
MVC triad.

The Storefront requirements
So we have been approached by a venture capitalist that wants to pay us a load of
cash to create a Storefront, great easy money, right? Before we start, we need to know
what this Storefront thing is going to do. We decide that we will begin by creating a
basic set of functionality and from there slowly build upon our base. So what's the
minimum set of requirements for a Storefront?

To provide a catalog of products
To provide a user interface to the catalog
To provide a way of categorizing products in the catalog
To provide a shopping cart
To provide a way to add, edit, and delete products from the catalog
To provide user accounts

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[83]

These requirements form the basis of our Storefront application. Obviously, we have
left out a few requirements that would be there in real life, as we do not want to get
too bogged down in writing the model classes, the most notable exclusion being a
way to order products. Hopefully this will not matter so much, as by the end of the
book you should be able to easily add it yourself.

The Storefront overview
The Storefront application will hopefully serve as a good example for you to
understand the Zend Frameworks MVC components. There are of course many ways
that one can skin the proverbial cat. However, we will try to cover all of the decisions
that were involved in the creation of the Storefront.

The core tasks we need to perform pan out to something like this:

Create the basic structure
Create our own library to deal with the model
Implement our model
Implement the application

Seems pretty simple written in a list like this, but we have a lot of work to do before
we get a fully working application, and many problems to consider and overcome. In
this chapter, we will be covering the first item on this list, which will provide a base
to build upon later.

Basic structure and setup
Lets start by looking at the first task on our list, creating the basic structure.
This process is very much like in the Hello Zend application. We first create
the directories and then bootstrap and initialize the application.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[84]

The directory structure
For the Storefront, we will not be using Zend_Tool to create our project as the 1.8
release does not support modules. We are also going to use a slightly customized
layout. Therefore, create a directory structure that matches the one below:

As you can see, this structure has many more folders than our Hello Zend
application, but basically we still have three main folders application, library,
and public. Let's have a look at the new folders and what we will be using them for:

application/config: This is used to store our configuration files.
Zend_Config will go here for its data.
application/layouts/*: This is used to store our global layout scripts.
These will contain HTML and placeholders that Zend_Layout will use.
application/modules: This stores our modules. These help us to
separate our controllers into groups. For now, we have just one module
storefront. This will be our default module. Inside our storefront module
folder, we have folders for controllers, models, and views, just like in
the Hello Zend application. However, we have also added two new folders
forms and services. forms will contain Zend_Form classes and services
will contain service classes that do not naturally fit into our models.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[85]

build: This is not really a Zend Framework recommended folder, but we
will be using this to store our Ant build files to help automate some tasks.
data: This stores any data that our application creates such as cache data.
tests: This is used for our unit tests.

Bootstrapping with Zend_Application
Previously in the Hello Zend application, we used a Front Controller plug-in
to initialize our application, but for the Storefront we are going to use the new
Zend_Application component. Zend_Application encapsulates the application
initialization process, making the process much easier and more consistent. It works
in much the same way as our Front Controller plugin. However, it also provides
useful things like resource auto-loading.

Zend_Application basics
Before we carry on with the bootstrapping process, let's take a minute to look at how
Zend_Application handles bootstrapping. For any application, there are always
many settings that need to be applied to various components. Previously, we used
an initialization plugin to move all this setup code into one manageable place.
Zend_Application replaces this method and provides a standardized way for
us to bootstrap our application.

The Zend_Application bootstrap process is constructed around the idea of
bootstrap resources. Each resource is responsible for a certain aspect of the bootstrap
process. For example, you may have the db resource, which will configure the
application's database adapter. We define all bootstrap resources. Therefore, we
need to create all the resources required to fully configure our application. There are
two ways to define bootstrap resources. They are by using a bootstrap class and by
creating a bootstrap resource plugin.

The bootstrap class contains a set of methods that are used to bootstrap the various
application components, and each method can be seen as a bootstrap resource.

A bootstrap resource plugin is like one method in the bootstrap class, and will be
used to perform one aspect of the bootstrap process. Zend_Application also comes
with some standard bootstrap resources plugins that perform common bootstrap
operations such as Front Controller or database configuration.

Now that we know the basic principles behind Zend_Application, let's continue
and start to bootstrap the Storefront. We will need to create all the bootstrap
resources that the Storefront requires.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[86]

Bootstrapping the storefront
To start, we need to first create the .htaccess file that routes requests to the Zend
Framework. You can copy this from the Hello Zend application.

public/.htaccess
php_value "short_open_tag" "on"

RewriteEngine On

RewriteCond %{REQUEST_FILENAME} -s [OR]
RewriteCond %{REQUEST_FILENAME} -l [OR]
RewriteCond %{REQUEST_FILENAME} -d

RewriteRule ^.*$ - [NC,L]
RewriteRule ^.*$ /index.php [NC,L]

Next we need to create the index.php file to which requests are routed, and
that includes the application.php, which will initialize our application. The
index.php used here is different to the one Zend_Tool creates and only contains
one line of code.

public/index.php
<?php
require '../application/application.php';

We then create our application.php file. We are going to do this slightly differently
than in Hello Zend. The main difference is that we are going to use Apache Ant to
set the environment variable for us.

application/application.php.dist
<?php
$paths = array(
 get_include_path(),
 '../library',
);
set_include_path(implode(PATH_SEPARATOR, $paths));

defined('APPLICATION_PATH')
 or define('APPLICATION_PATH', realpath(dirname(__FILE__) . '/../
application'));
defined('APPLICATION_ENV')
 or define('APPLICATION_ENV', '@ENVIRONMENT@');

require_once 'Zend/Application.php';

$application = new Zend_Application(
 APPLICATION_ENV,
 APPLICATION_PATH.'/config/store.ini'
);
$application->bootstrap();
$application->run();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[87]

We can see that this file is very different to what we used in Hello Zend. The first
major difference is that we have used a .dist file extension. The reason for this
is that we are going to use Apache Ant to copy the .dist file to application/
application.php and replace the @ENVIRONMENT@ placeholder with the
environment we are using (development or production). We do not have to use
Apache Ant when creating a Zend Framework based application. This is simply a
preference of mine as I use Ant for many other tasks when managing a project.

Looking at the code within application.php.dist, we first set up the include path.
This time we are using an array to specify the include paths and then using implode
to create the path string for set_include_path(). Setting the include path this
way makes it much easier to add more paths later, for example, if we wanted to use
components in the incubator.

Next, we create two global constants, APPLICATION_PATH and APPLICATION_ENV.
These define the path to the application directory and the application environment
respectively. We make sure that these have not already been set using the
defined() function. If they have not, then we assign the values. The value for
APPLICATION_PATH is created using the realpath() function. This will give us the
full path to the application directory. The value for APPLICATION_ENV is where we
use our @ENVIRONMENT@ placeholder. This will be replaced by Ant when we run a
build and the application.php file is created. The application environment can be
production, development, or test. These are not Zend Framework specific, and you
can have as many different environments as required.

After configuring our global settings, we first include the Zend_Application
component. This will be the only requirement that we will need, as
Zend_Application will set up the autoloader for us. Next, we instantiate a new
Zend_Application instance, and we pass two parameters to this construct,
APPLICATION_ENV and APPLICATION_PATH. The '/config/store.ini' define the
application's environment and the path to the configuration file respectively. The
application's environment will be made accessible to all bootstrap components.
This means that when we write our file, we can easily apply settings based on the
environment. The configuration file contains the settings for Zend_Application.
This includes things like autoloader namespaces and where our bootstrap file is
located. We do not have to use a configuration file here, and we could also pass
in an array containing the settings of Zend_Application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[88]

With Zend_Application configured, we then call the bootstrap() method. This
will execute all the bootstrap resources that are registered to Zend_Application.
We can also choose to only bootstrap a certain resource by passing its name to the
bootstrap() method. For example, if we only wanted to set up the database, then
we could do bootstrap('db'). This would call only the db resource. The main use
for this functionality is during testing. Once the application is bootstrapped, we call
the run() method, which will start up the application. In our case, this is to start the
MVC dispatch process.

Zend_Application configuration
In our application.php.dist file, we have opted to use Zend_Config to define the
options we send to the Zend_Application instance. All options for the application
will be stored within the store.ini in the config directory.

application/config/store.ini

[bootstrap]
Autoloadernamespaces[] = "Zend_"
Autoloadernamespaces[] = "SF_"

phpsettings.display_errors = 0
phpsettings.error_reporting = 8191
phpsettings.date.timezone = "Europe/London"

bootstrap.path = APPLICATION_PATH"/bootstrap/Bootstrap.php"

resources.frontcontroller.moduledirectory = APPLICATION_PATH"/modules"
resources.frontcontroller.defaultmodule = "storefront"
resources.frontcontroller.params.prefixDefaultModule = true
resources.frontcontroller.throwerrors = false

resources.view = ""
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"
resources.layout.layout = "main"

[production : bootstrap]

[development : production]
phpsettings.display_errors = 1
resources.frontcontroller.throwerrors = true

[test : production]

Zend_Config provides us with an easy way to centrally configure our application by
placing our config directives in either an INI or XML file. It also allows us to separate
our config into sections, which can inherit from each other. This means that we can
have different settings for different environments. Therefore, if we are developing
our application, then we can have development specific directives and another set of
directives in production.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[89]

For our application, we have decided to use an INI file. Even though using an XML
file works in just the same way, choose whichever file type you prefer. The INI
file has four sections. These are defined using square brackets and are bootstrap,
production, development, and test. Zend_Application will automatically load
the correct section from the config file based on the application environment. For
example, if we are in a test environment, then Zend_Application will load the
test section.

To avoid duplicating directives for each environment, we are using inheritance
functionality of Zend_Config. By using a colon in the section name followed by
another sections name, we can inherit that section's directives. For example, the
production section inherits from the bootstrap section ([production: bootstrap]),
meaning that production contains exactly the same directives as the bootstrap section.

Configuration options
Our configuration file contains a lot of directives. All of these will be used by
Zend_Application to configure our application.

Autoloader namespaces
Our first set of directives is autoloadernamespaces:

autoloadernamespaces[] = "Zend_"
autoloadernamespaces[] = "SF_"

Zend_Application uses the Zend_Loader_Autoloader component to handle
the automatic loading of library files. This component is a replacement for
registerAutoload() functionality of Zend_Loader. The Zend_Loader_Autoloader
provides a simple way of managing PHP's SPL Autoloader. By using this
component, we can easily add multiple autoloaders to our application. We will
also use Zend_Loader_Autoloader during the bootstrap process to enable
autoloading of our application resources such as Models and Forms.

The Zend_Loader_Autoloader works by registering itself to the SPL Autoloader and
then acts as a stack that we can add and remove autoloaders from. When we add our
autoloadernamespaces to Zend_Application, we are doing the equivalent of:

$autoloader = Zend_Loader_Autoloader::getInstance();
$autoloader->registerNamespace('Zend_');
$autoloader->registerNamespace('SF_');

Here we are adding our two autoloader namespaces, Zend_ and SF_. Both use
the standard autoloader callback—array('Zend_Loader', 'loadClass') or
Zend_Loader::loadClass. This callback will be used to load classes that match
the namespace.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[90]

The namespace is therefore very important and we must be careful in the way
we use it. First off all, the namespace is used to match the class name passed to the
Zend_Loader_Autoloader component by the SPL Autoloader, so if we do
Zend_Log();, then the autoloader will match the Zend_ part of the class name and
use the autoloader connected to that namespace. We can already see the potential
problems that we will have if we define our namespaces badly. For example,
Zend Framework has an extra library, which has the class naming convention of
ZendX_Class_Name. If we were to add the namespace Zend without the underscore,
then the autoloader would not be able to differentiate between the main Zend
components and the ZendX components.

PHP settings
Our second set of directives contains our PHP settings. These are the settings that we
would usually set through the ini_set() function.

phpsettings.display_errors = 0
phpsettings.error_reporting = 8191
phpsettings.date.timezone = "Europe/London"

Here we specify that the display_errors setting should be off, error_reporting
should be E_ALL|E_STRICT, and that the timezone is Europe/London.

The error reporting setting here has to be an integer, as the E_ALL|E_STRICT that we
would usually use will not work because it does a bitwise Or(|) on the two constants
to create the 8191 value, and the ini can not run PHP functions. An easy way to find
the integer of the error reporting level you want is to simply echo it out (for example
echo E_ALL|E_STRICT).

The date time zone is also another very important setting, and you should not use a
Zend Framework based application without this set.

Bootstrap class path
Next we have the bootstrap class path directive:

bootstrap.path = APPLICATION_PATH"/bootstrap/Bootstrap.php"

To bootstrap our application, we are going to use a bootstrap class. In order to
do this, we need to tell Zend_Application where it is. Here, we simply use the
APPLICATION_PATH constant we set earlier to create the full path to the bootstrap
file. This will give us a path similar to /home/keith/storefront/application/
bootstrap/Bootstrap.php. Notice that we are able to use PHP constants inside
our .ini file.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[91]

Bootstrap resource plugins
Next, we configure our bootstrap resource plugins. These are bootstrap
resources that have their own separate class away from the main bootstrap class.
Currently, we are using Zend_Application_Resource_Frontcontroller,
Zend_Application_Resource_View, and Zend_Application_Resource_Layout.
These are default resource plugins that are shipped with Zend_Application.

resources.frontcontroller.moduledirectory =
 APPLICATION_PATH"/modules"
resources.frontcontroller.defaultmodule = "storefront"
resources.frontcontroller.params.prefixDefaultModule = true
resources.frontcontroller.throwerrors = false

resources.view = ""
resources.layout.layoutPath = APPLICATION_PATH "/layouts/scripts"
resources.layout.layout = "main"

To add a bootstrap resource plugin to Zend_Application, we define it within the
resources directive, followed by the resource name and its parameters (if there are
any). For example, if we were using the db bootstrap resource, then we would use
resources.db.

For the frontcontroller resource, we first define the moduledirectory parameter.
Previously in Hello Zend we did not use modules so we simply set the controller
directory path. For the storefront, we are going to use a module called storefront
as our default module. To achieve this, we set the module directory path to
APPLICATION_PATH"/modules". This directory will contain a set of directories that
contain one module each; currently we only have one module storefront. By using
the moduledirectory setting, the Front Controller will automatically set the
controller directory for each of our modules.

The default module for an application will be called default. However, as we do
not have a module called default in the modules directory, we need to change the
default module name. We do this by using the defaultmodule parameter of the
frontcontroller resource and setting the value to "storefront". This will make
the storefront module our default module.

As we have changed the default module to storefront, we also add the Front
Controller parameter, prefixDefaultModule, which will tell the Dispatcher to prefix
the Action Controller class names with Storefront_. We do this so that our modules
controllers are namespaced correctly.

Our final frontcontroller resource parameter is throwerrors. This will set the
Front Controllers throwExceptions() flag for us. By default, we set it to false
as we want exceptions to be handled by the ErrorController.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[92]

Next, we initialize the View part of our application using the view resource
plugin. The first parameter we use is resources.view = "". This part simply tells
Zend_Application to create a new Zend_View instance for us that we can use later.
Once we have our View instance ready, we can start using the View related plugins.
In this case, we configure our application to use a layout. This layout will be used
to provide the general interface for the Storefront. To use a layout, we first tell our
application where our script files are located using resources.layout.layoutPath
= APPLICATION_PATH "/layouts/scripts". Our global view scripts will be stored
in this directory. Our final piece of configuration is to define which layout script
should be used. In this case, we use resources.layout.layout = "main", which
will use the main.phtml script.

Using the view and layout resource plugins, as shown here, is equivalent to using
this code:

// get the view instance
$viewRenderer = Zend_Controller_Action_HelperBroker::getStaticHelper('
viewRenderer');
$viewRenderer->init();

// init the layouts
Zend_Layout::startMvc(array(
 'layout' => 'main',
 'layoutPath' => APPLICATION_PATH . '/layouts/scripts'
)
);

Using an array
So far we have defined all of our settings using the store.ini file. However, this can
be a little confusing as it is hard to see what Zend_Application accepts in its options
array. Given below is the exact configuration we created in store.ini but this time
passed to Zend_Application using an array:

$application = new Zend_Application(
 APPLICATION_ENV,
 array(
 'autoloadernamespaces' => array('Zend_', 'SF_'),
 'phpsettings' => array(
 'display_errors' => false,
 'error_reporting' => E_ALL|E_STRICT,
 'date.timezone' => 'Europe/London'
),
 'bootstrap' =>
 APPLICATION_PATH . '/bootstrap/Bootstrap.php',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[93]

 'resources' => array(
 'frontcontroller' => array(
 'moduledirectory' =>
 APPLICATION_PATH . '/modules',
 'defaultmodule' => 'storefront',
 'throwerrors' =>false,
 'params' => array(
 'prefixDefaultModule ',true
),
 'view' => '',
 'layout' => array(
 'layoutPath' => APPLICATION_PATH .
 '/layouts/scripts',
 'layout' => 'main'
),
),
),
)
);

Note that by using an array we would lose the ability to easily reconfigure the
application on a per-environment basis.

Environment specific configuration
The final aspect of our configuration file is how we specify environment specific
directives. So far we have defined our entire configuration within the [bootstrap]
section of the store.ini. This section forms the basis of our application
configuration and is inherited by each environment specific section. Therefore,
to apply environment specific configuration, we simply need to override the
[bootstrap] sections directive with the environment specific value.

[production : bootstrap]

[development : bootstrap]
phpsettings.display_errors = 1
resources.frontcontroller.throwerrors = true

[test : bootstrap]

Here are our three environment sections, each extending the [boostrap] section.
For the [production] and [test] sections we have no specialization. For the
[development] section, we redefine the phpsettings.display_errors and
resources.frontcontroller.throwerrors directives. This will then turn
on errors and throw the Front Controller exception when we are in a
development environment.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[94]

The bootstrap class
To complete our basic bootstrapping, we need to create the bootstrap class for
Zend_Application.

application/bootstrap/Bootstrap.php

class Bootstrap extends Zend_Application_Bootstrap_Bootstrap
{
 public $frontController;

 protected function _initLocale()
 {}

 protected function _initViewSettings()
 {}
}

To create a bootstrap class for Zend_Application, we must subclass the
Zend_Application_Bootstrap_Bootstrap class. This class contains all the base
functionality required for our bootstrap class. We call the class Bootstrap. This is the
default name that Zend_Application will look for when loading the bootstrap file.

We can also use a different name if required by using Zend_Application's
bootstrap class configuration directive. To do this in our configuration
file, we would use:
bootstrap.path = APPLICATION_PATH"/bootstrap/
 Bootstrap.php"
bootstrap.class = "MyBootstrapClass"

The Bootstrap class contains two methods, _initLocale() and
_initViewSettings(), which will be called during the bootstrap process.

Bootstrap resource execution order
The order in which our Bootstrap Resources are executed is very important to us. For
example, some parts of the bootstrap may depend on others, meaning we need to be
able to control what is executed and when.

To handle dependencies between bootstrap resources, we use the bootstrap()
method. By using this method, we can call any bootstrap resource registered
to Zend_Application. For example, if view resource (_initViewSettings())
require that the frontcontroller resource be executed before it runs, we could
add $this->bootstrap('frontcontroller'); inside the _initViewSettings()
method's body. By doing this, we would make sure that the frontcontroller
was ready before we configured our view. Zend_Application will also make sure
that resources are only ever called once. Therefore, we do not have to worry about
multiple executions of bootstrap resources.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[95]

Zend_Application also has a "natural" order in which bootstrap resources are
executed. First the resources within the bootstrap class are executed and then the
registered bootstrap plugins are executed. All execution of both class resources and
plugin resources are executed in FIFO (first in first out) order. Therefore, currently
our bootstrap execution stack will be:

Locale class resource—initLocale()
ViewSettings class resource—_initViewSettings();

Front Controller plugin resource
View plugin resource
Layout plugin resource

Bootstrap abstract class
The Zend_Application_Bootstrap_BootstrapAbstract class provides many
methods that can help us with our bootstrapping process. Following are the main
ones we should know about:

bootstrap($resource = null): Calls the bootstrap resource(s)
$resource null|array|string: Calls All|Multiple|single resource(s)
getApplication(): Gets the Zend_Application instance
getEnvironment(): Gets the application environment
getOption($key): Get an option that was passed to Zend_Application
$key string
getOptions(): Get all options passed to Zend_Application
hasOption($key): Check if an option exists $key string
getClassResources(): Get an array of the Class Resource method names
getPluginResources(): Get an array of Plugin Resources
getPluginResource($resource): Get a single Plugin Resource instance
$resource string—The Resource name
hasPluginResource($resource): Check if a Plugin Resource is registered
$resource string—The Resource name

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[96]

Custom options
We can use custom options when instantiating Zend_Application.
This means that we can pass in our own options that our resources can
use through the options related methods.
Accessing Plugin Resource properties
If a Plugin Resource has data we need to access, then we can access it by
getting the Resource Plugin instance using the getPluginResource()
method, and then access its public properties.

Creating the bootstrap resources
So far we have only created a basic skeleton for our Bootstrap class. Let's add the
functionality to our three Bootstrap class resources now.

Locale initialization
The Locale resource configures the applications locale. This is always a good
practice when creating an application as many Zend Framework components are
locale aware. To set the locale, we simply create a new Zend_Locale instance and set
it in the registry using the string Zend_Locale. This will then be accessible by all the
locale aware components.

application/bootstrap/Bootstrap.php

protected function _initLocale()
{
 $locale = new Zend_Locale('en_GB');
 Zend_Registry::set('Zend_Locale', $locale);
}

View initialization
Next, we need to configure our View. Here we need to apply all our global view
settings to Zend_View.

application/bootstrap/Bootstrap.php

 protected function _initViewSettings()
 {
 $this->bootstrap('view');

 $this->_view = $this->getResource('view');

 // set encoding and doctype
 $this->_view->setEncoding('UTF-8');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[97]

 $this->_view->doctype('XHTML1_STRICT');
 // set the content type and language
 $this->_view
 ->headMeta()
 ->appendHttpEquiv(
 'Content-Type', 'text/html; charset=UTF-8'
);
 $this->_view
 ->headMeta()
 ->appendHttpEquiv('Content-Language', 'en-US');

 // set css links
 $this->_view
 ->headStyle()
 ->setStyle('@import "/css/access.css";');
 $this->_view
 ->headLink()
 ->appendStylesheet('/css/reset.css');
 $this->_view
 ->headLink()
 ->appendStylesheet('/css/main.css');
 $this->_view
 ->headLink()
 ->appendStylesheet('/css/form.css');

 // setting the site in the title
 $this->_view->headTitle('Storefront');

 // setting a separator string for segments:
 $this->_view->headTitle()->setSeparator(' - ');
 }

We are doing a lot here, so let's break this down further and look at each
step involved.

Instantiating Zend_View
To apply any settings to the view, we first need to retrieve an instance of Zend_View.
We do this by calling the view resource plugin using $this->bootstrap('view').
Remember, we need to do this, as when this method is called, the view plugin
resource will not have been called. Therefore, we need to call it within our class
resource before we can use the view. After we have called the view plugin
resource, we can then retrieve the Zend_View instance from it using
$this->getResource('view'). Once we have this, we can carry on and
configure the view.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[98]

Doctype and encoding
One very important setting is the doctype and encoding, which is essential for a
web application.

// set encoding and doctype
$this->_view->setEncoding('UTF-8');
$this->_view->doctype('XHTML1_STRICT');

We need to set the encoding and doctype so that the View and its related helpers
know what to encode text as and what type of HTML standard they should output.
We do this by using the setEncoding() and doctype() methods, respectively.

Adding metadata
Next, we need to set the various metadata that our view scripts will use.

// set the content type and language
$this->_view
 ->headMeta()
 ->appendHttpEquiv(
 'Content-Type', 'text/html; charset=UTF-8'
);

$this->_view
 ->headMeta()
 ->appendHttpEquiv('Content-Language', 'en-US'
);

This will then be used globally in our layout scripts (more on layouts in a minute).
To add these, we use the corresponding View Helpers.

To add metadata, we use the headMeta() helper. In our example we add two meta
items, one for the content-type and charset and other for the content-language.
This will produce the following HTML.

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="Content-Language" content="en-US" />

Both of these are special http-equiv meta tags, and therefore we use the
appendHttpEquiv() method. If we were adding something like standard metadata,
we use the appendName() method instead. For example, to add keywords we use:

$this->_view->headMeta()->appendName('keywords', 'my keys');

The appendName() produces a named meta tag like <meta name="" content="" />,
which is what we would use mostly when adding metadata.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[99]

Adding CSS stylesheets
Next we need to add our stylesheets. We use two different helpers here,
headStyle() and headLink().

$this->_view
 ->headStyle()
 ->setStyle('@import "/css/access.css";');

$this->_view
 ->headLink()
 ->appendStylesheet('/css/reset.css');

For most stylesheets, it is best to use the headLink helper. However, in our case, we
need to include access.css using the @import method. This simply makes sure that
some screen readers do not include the file. This will produce the following HTML:

<style type="text/css" media="screen">
<!--
@import "/css/access.css";
-->
</style>

<link href="/css/reset.css" media="screen" rel="stylesheet"
 type="text/css" />

<link href="/css/main.css" media="screen" rel="stylesheet"
 type="text/css" />

<link href="/css/form.css" media="screen" rel="stylesheet"
 type="text/css" />

As we can see, the headStyle helper produces an inline <style> tag, whereas the
headLink helper produces a head <link> tag.

Setting the document title
We are going to need a title for our document; we can set this using the headTitle()
View Helper.

$this->_view->headTitle('Storefront');

$this->_view->headTitle()->setSeparator(' - ');

Here we are simply setting the default title to Storefront and then setting the
separator to ' - '. Later, we can add to this title using headTitle('Product1',
'PREPEND') or headTitle('Product1', 'APPEND'), which will then either
prepend or append onto our default title.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[100]

All of the view helpers we have used here are actually a concrete
implementation of the placeholder view helper. Most of them also provide
methods to allow you to append, prepend, unset, and manage the order
of the items contained within them. I would suggest checking the latest
documentation for more details on how to use each of these helpers.

Bootstrapping complete
With our final resource created, our bootstrapping is complete. As we can see,
Zend_Application provides us with a great way to easily manage even the most
complex of configurations. We will be coming back to the bootstrap on a regular
basis as we progress through the book, so don't worry if you can't take it all in now,
we will have plenty of practice later on.

The basic layout
With all the bootstrapping done, we are now nearly ready to fire up our
application. However, first we need to create the layout view scripts and a
controller to handle our request. To start, let's create our layout scripts that
will form the basis of the storefront.

application/layouts/scripts/main.phtml

<?= $this->doctype() ?>

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
 <?= $this->headMeta(); ?>

 <?= $this->headTitle(); ?>

 <?= $this->headStyle(); ?>

 <?= $this->headLink(); ?>

 <?= $this->headScript(); ?>
</head>
<body>
 <h1 class="noDisplay"><?= $this->
 placeholder('Zend_View_Helper_HeadTitle');?></h1>

 <div id="headwrap" class="clearfix">

 <div class="right">
 <?= $this->render('_topnav.phtml') ?>
 </div>

 <div id="logo" class="left">
 <img src="/images/layout/logo.png" alt=
 "Shop till you drop..." />
 </div>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[101]

 </div>

 <div id="contentWrap" class="clearfix">
 <div class="left categorylist">
 Category list
 </div>
 <div class="content left">
 <?= $this->layout()->content ?>
 </div>
 </div>

 <div id="footer" class="clearfix">
 <div class="left">

 RSS 2.0
 </div>
 <div class="right">
 © 2008 Keith Pope
 </div>
 </div>
</body>
</html>

Again, we have a lot going on here, so let's look at the important stuff that is
happening within our view script.

First, we render the output of the main View helpers, doctype(), headMeta(),
headTitle(), headStyle(), headLink(), and headScript(). The helpers will
output their contents, which we set earlier in the Bootstrap class.

For the document title, we also want to have a <h1> tag that contains the title and
which is hidden for the visual display (we do this simply out of good practice).
However, we have a problem. The headTitle helper produces a <title> tag.
Therefore, we cannot use it within the <h1>. To get around this, we simply access the
headTitle helper's data directly through the placeholder view helper. We can do
this as most of the helpers use the placeholder internally to store their data.

Next, we render the top navigation menu. This contains the links to the main
Storefront areas. We have used another view script here so our main layout is
easier to read and maintain. To render the top navigation script, we use:

<?= $this->render('_topnav.phtml') ?>

By using the render() method of Zend_View, we can render as many additional
subviews as we like. The _topnav.phtml script should be located in the same folder
as the main.phtml script. This is included in the example files, and remember to
copy it over.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[102]

When we use render like this, it is important to remember that the subview
(_topnav.phtml) will have the same variable scope as the script from which they
are called. Therefore, we must be careful of variable clashes. If you want to be sure
that this does not happen, you can use the partial helper, which will render a view
script within its own scope. There is one downside to the partial helper though. It
has to clone a lot of objects to get the view into its own scope, meaning that there
is a performance hit when using it, so use partial() carefully.

Our final piece of PHP in the view script renders the output from our controllers
within the template.

<?= $this->layout()->content ?>

Here we are using the layout view helper to render the default response segment
contained in the Zend_Controller_Response_Http instance. If you remember
from the previous chapters, the Action Controllers render their views into the
HTTP Response object. This means that the output from our actions will be
rendered within our template. Of course, we can also render other response
segments that are contained within the Response object.

A little task for you
Now that we have our layouts, we need to create some controllers and views to
actually use all this. However, rather than recapping on what we have already
covered, I will leave it up to you to create these.

To get the application working, you will need to create:

IndexController.php with an indexAction
ErrorController.php with an errorAction
Two View scripts for each Controllers Action (index.phtml and
error.phtml)

These are included with the example files for this chapter if you need them.
However, it is worth giving it a go.

Building the Storefront
We are ready to fire up our application. To do this, we will use Apache Ant to
write our bootstrap file for us. This step is not really related to the Zend Framework
as such, but hopefully you will find it a useful insight into how you can manage
your applications.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[103]

The files for the build are held in the build folder inside the root directory of the
application. You can find these in the downloadable example files. Copy them
over if you haven't already done so. Inside the build folder we have two files,
ant.properties and build.xml. These hold settings for the build and build
commands, respectively. Ant's build files work just like shell scripts. You can run
many commands and automate most of your applications setup requirements.

To build our application from the command line, move into the build folder and then
execute the following command:

ant

This will start the build with the default properties stored in the ant.properties
file. You should see something similar to the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[104]

We have a successful build and bootstrap.php has been created for us. The
environment used is the default development. We can now change this easily by
editing the ant.properties file and then re-running the build. Also, for quick builds
using a different environment, we can send the environment variable through the
command line using the following command:

ant -Denvironment=production

Now that we have a successful build, we can see our new creation. To do this, simply
point your web server to the public directory and fire up your web browser. You
should get something like the one shown in the following screenshot:

The Storefront database
With the basic storefront now running, we still have a little more work to do before
we are ready to carry on.

We will need to create the database that will store all of our product and customer
information. For this, we are going to use MySQL® as it is the most common
database server in the LAMP/WAMP stack. If you do not have MySQL® installed,
please install it now.

Database installation
Database installation should be straightforward. We first need to create a schema for
our tables to live in and then simply import the tables and data from the example
files. You can call the schema whatever you like but in the examples here, we are
going to use storefront. Once you have the database schema ready, you can import
the tables using the two SQL scripts that are located within src/sql. To import
the tables from the command line, change into the src/sql directory and run the
following commands substituting your database username, password, and database
name as appropriate.

mysql -umyUser -pmyPass storefront < structure.sql

mysql –umyUser –pmyPass storefront < data.sql

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[105]

The Storefront database is very simple and currently contains only four tables.
They are product, productImage, category, and user, which form the basis
of our catalog.

Product table
The product table holds all of our product information and is the main table we will
be using.

Field Type Null Key Default Extra
productId int(10) unsigned No PRI NULL Auto_

increment
categoryId int(10) unsigned No MUL NULL
ident varchar(100) No UNI NULL
name varchar(64) No NULL
description Text No NULL
shortDescription varchar(200) No NULL
price decimal(10,2) No NULL
discountPercent int(3) No NULL
taxable enum('Yes','No') No Yes
deliveryMethod enum('Mail','Download') No Mail
stockStatus enum('InStock','PreOrder',

'Discontinued','Unavailable')
No InStock

Each product has a categoryId. This is the category to which the product is linked,
and this means products have a one-to-one relationship with their category. This
is somewhat unusual for a storefront application, as you would normally allow
products to be in multiple categories. We have gone with a simpler approach so as
not to over complicate the implementation later on. We also have an ident field,
which is used to uniquely identify a product using a human friendly string, and
also to create search engine friendly URLs. The final thing to note is that the price is
stored as a decimal. Storing monetary value as decimals can be problematic because
of rounding inaccuracies. Generally, it is best to store such values as integers and
convert them to decimal when required. Again, we use decimal storage to simplify
the implementation.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[106]

ProductImage table
The productImage table holds our products image information. This is so that we can
have images for each product.

Field Type Null Key Default Extra
imageId int(10) unsigned No PRI NULL Auto_

increment
productId int(10) unsigned No MUL NULL
thumbnail varchar(200) No NULL
full varchar(200) No NULL
isDefault enum('Yes','No') No No

Each product can have multiple images and will have one default image. The table
stores the filenames of the thumbnail and full size image files.

Category table
The category table holds our category information, which is used to categorize
our products.

Field Type Null Key Default Extra
categoryId int(10) unsigned No PRI NULL Auto_

increment
name varchar(200) No NULL
parentId int(10) unsigned No NULL
ident varchar(200) No UNI NULL

Each category has a parentId. This is used to create a hierarchical structure
where categories contain other categories. Categories that have a parentId of 0
form the top level category tier. All non top tier categories parentId field values
will contain the categoryId of their parent category. The category table also has
an ident field like the product table, which will be used again to create search
engine friendly URLs.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[107]

The user table
The user table holds our user information. This is used to define our customers
and administrators.

Field Type Null Key Default Extra
userId int(10) unsigned No PRI NULL Auto_increment
title varchar(10) No NULL
firstname varchar(128) No NULL
lastname varchar(128) No NULL
email varchar(128) No UNI NULL
passwd char(40) No NULL
salt char(32) No NULL
role varchar(100) No customer

Each user will require a password so that they can log in to the storefront. For
security, we will hash the passwd and salt fields using the sha1 and md5
algorithms respectively.

Introducing Zend_Db
Now that our database is installed, our application will need a way of accessing it.
To do this, we are going to use Zend_Db. Zend_Db among other things provides a
way to easily connect and interact with the various brands of RDBMS. I suspect that
you may have already used similar things in the past such as ADODB or the PEAR
DB library.

To use Zend_Db, we need to configure it. This is done by using one of the RDBMS
specific adapters provided.

$db = Zend_Db::factory('Pdo_Mysql', array(
 'host' => '127.0.0.1',
 'username' => 'root',
 'password' => 'root',
 'dbname' => 'storefront'

));

In the example above, we use the Zend_Db::factory() method to configure our
database connection. The first parameter specifies the adapter to use. In our case,
this is the Pdo_Mysql adapter. Our second parameter is an array containing the
actual details for this connection. This is used to connect, authenticate, and select
the schema (dbname). You can find a full list of options for each adapter in the online
reference manual.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[108]

To use the Pdo_Mysql adapter, you must have the PDO (PHP Data
Objects) MySQL PHP extension installed. If you have trouble installing
this extension, then you can choose to use the mysqli extension instead
by specifying the adapter as mysqli in the factory method.

Adding Zend_Db to the Storefront
At this point, we can now add the database connection settings to our
configuration file.

application/config/store.ini

[bootstrap]

resources.db.adapter = "PDO_MYSQL"
resources.db.isdefaulttableadapter = true
resources.db.params.dbname = "storefront"
resources.db.params.username = "root"
resources.db.params.password = "root"
resources.db.params.hostname = "localhost"
resources.db.params.charset = "UTF8"

To configure our database connection, we use the db bootstrap plugin resource.
This resource is a standard resource that is shipped with Zend_Application.

The options we pass to the db resource are the same as in our previous example. We
set the adapter to Pdo_MYsql, dbname to storefront, username to root, password
to root, and hostname to localhost. Remember, you will need to change these
options to reflect your own database connection details.

The other additional settings are isdefaulttableadapter and driver_options.
The isdefaulttableadapter tells the db resource to set this adapter as the adapter
that all the Zend_Db_Table instances should use.

Logging and debugging
As we develop our application, we are going to need a good way to debug and find
errors. Zend Framework provides some very useful tools for this in the form of the
Zend_Debug and Zend_Log components.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[109]

Zend_Debug
Zend_Debug is a very simple component that provides a quick way to dump
variables to screen for ad-hoc debugging.

Here is an example usage of dumping the $_SERVER PHP global array:

Zend_Debug::dump($_SERVER, 'SERVER VARS', true);

This command will dump out the $_SERVER array with the label SERVER VARS
prepended to the output, and the output will be echoed.

Zend_Log
Zend_Debug is very good for ad hoc debugging. However, for more permanent
debugging, we can use Zend_Log. Zend_Log has some great features, one of my
favorites being the Firefox Firebug stream writer that enables us to log to the
Firebug console!

Basic Zend_Log usage is very simple. We just need to instantiate it and then pass in
one of the provided log stream writers.

$log = new Zend_Log(
 new Zend_Log_Writer_Stream('php://output')
);

In our example, we are using the Zend_Log_Writer_Stream that logs to a PHP
stream, in this case php://output (writes to screen). This is a very basic example,
and Zend_Log has much more functionality such as multiple loggers and the ability
to define your own events and log levels. For the full breakdown of features, consult
the reference manual, which covers all of Zend_Log functionality.

Adding Zend_Log to the Storefront
We are going to need some permanent logging for the Storefront, so let's add
Zend_Log into our Bootstrap class and make it available to the whole application.

Add the following to the bootstrap class:

application/bootstrap/Bootstrap.php

protected function _initLogging()
{
 $this->bootstrap('frontController');
 $logger = new Zend_Log();

 $writer = 'production' == $this->getEnvironment() ?

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[110]

 new Zend_Log_Writer_Stream(APPLICATION_PATH
 .'/../data/logs/app.log') :
 new Zend_Log_Writer_Firebug();
 $logger->addWriter($writer);

 if ('production' == $this->getEnvironment()) {
 $filter = new Zend_Log_Filter_Priority(
 Zend_Log::CRIT
);
 $logger->addFilter($filter);
 }

 $this->_logger = $logger;
 Zend_Registry::set('log', $logger);
}

The Logging bootstrap resource uses quite a bit of Zend_Log functionality. However,
it is mixed in with some logic that sets up logging for the different application
environments, so let's break it down a little. Note that the Logging resource depends
on the frontContoller resource. Therefore, we call $this->bootstrap('frontCon
troller') at the start of the _initLogging() method.

$logger = new Zend_Log();

$writer = 'production' == $this->getEnvironment() ?
 new Zend_Log_Writer_Stream(APPLICATION_PATH
 .'/../data/logs/app.log'):
 new Zend_Log_Writer_Firebug();
$logger->addWriter($writer);

This section first creates a new Zend_Log instance so that we can add our
configuration to it. Next, we create our writer. We use a different writer depending
on the environment. If the environment is "production", then we will use a file to
log, which will be stored inside the data/logs directory and will be called app.log.
If we are not in the "production" environment, we use the Firebug writer. This will
write log messages to the Firebug console. Finally, we add the writer to Zend_Log.

To use the Firebug writer, we need to be using the Firefox web browser
and two Firefox add-ons, Firebug and FirePHP. You can get Firefox
from http://www.mozilla.com and the add-ons are available from
https://addons.mozilla.org. If you do not wish to do this, then
change the code so that the writer simply uses a file instead.

if ('production' == $this->getEnvironment()) {
 $filter = new Zend_Log_Filter_Priority(
 Zend_Log::CRIT
);
 $logger->addFilter($filter);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[111]

In this section, we add a filter to the Zend_Log instance if we are in a production
environment, which filters out all log calls below the critical level. Zend_Log
supports a number of log levels, as mentioned in the following table:

Log level Class constant Integer value Description
Emergency Zend_Log::EMERG 0 System is unusable
Alert Zend_Log::ALERT 1 Action must be taken
Critical Zend_Log::CRIT 2 Critical condition
Error Zend_Log::ERR 3 Error condition
Warning Zend_Log::WARN 4 Warning condition
Notice Zend_Log::Notice 5 Normal but significant

condition
Information Zend_Log::INFO 6 Information message
Debug Zend_Log::DEBUG 7 Debug message

Log levels are used when we write to a log. For example, to write a debug message,
we would use:

$logger->log('Debug message', Zend_Log::DEBUG);

Or:

$logger ->debug('debug message');

Adding a filter when we are in the production environment, means that we will
not have any unnecessary log message filling up the log. This also means that we
can permanently leave development log messages in our code and not worry about
removing them when releasing our software.

$this->_logger = $logger;
Zend_Registry::set('log', $logger);

Our final section of code simply assigns the logger to the protected $_logger class
property and adds a reference to the logger into the Registry so that we can access it
throughout the application.

Using the logger
Now that our logger is configured, we can start using it. To get us started, let's log
the Bootstrap process. To do this, add the following to the bootstrap.

protected function _initLocale()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

...

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[112]

protected function _initView()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

...

To see this working, run a build and make the environment "development". Once the
build has completed, open Firefox and browse to the Storefront.

If you have not installed the Firebug and FirePHP add-ons for Firefox, then install
them now and allow your local site in the FirePHP options. You should now be able
to open the Firebug console and should see our new log messages. The following
screenshot shows the output:

As we can see when each of the resources is called, they log this to Firebug for us.
With the logger writing to the Firebug console like this, we can easily debug our
application using the logger from within Firefox.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 3

[113]

Database profiling with Zend_Log
There is another great feature we can use to help debug our application using
Zend_Log. This is to couple it with the Zend_Db profiling functionality. To do this,
we need to add a new bootstrap resource to the Bootstrap class.

application/bootstrap/Bootstrap.php

protected function _initDbProfiler()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

 if ('production' !== $this->getEnvironment()) {
 $this->bootstrap('db');
 $profiler = new Zend_Db_Profiler_Firebug(
 'All DB Queries'
);
 $profiler->setEnabled(true);
 $this->getPluginResource('db')
 ->getDbAdapter()
 ->setProfiler($profiler);
 }
}

The profiler setup is simple. We first check to make sure that we are not in a
production environment and then we call the db resource. We need the db
resource to be executed before we can add the profiler to the database adapter.

To configure the profile, we create a new Zend_Db_Profiler_Firebug instance
and pass in the label 'All DB Queries' to its constructor. Once the profiler is
instantiated, we enable it by using the setEnabled() method. We then need to add
the profiler to the database adapter. To do this, we need to get the database adapter
from the db resource using getPluginResource('db')->getDbAdapter(). This will
return the adapter instance, and we can then set the profiler on the adapter using its
setProfiler() method.

All database queries are now logged for us to the Firebug console. Obviously, we
have no database queries at the moment so you can't see it working yet, but we will
have some soon, so keep an eye on the Firebug console.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Basic Setup

[114]

Summary
We now have the basic skeleton of the Storefront completed. From here we can start
to add the rest of the functionality required.

In this chapter, we have covered:

Application directory structure
Bootstrapping with Zend_Application
Creating and using bootstrap resources
Using Zend_Config with Zend_Application
Configuring modules, views, locale, logging, layouts, and profilers
Installing the storefront database and its structure
Building our application using Apache Ant

The most important aspect of this chapter is Zend_Application. It provides the
basic building blocks for configuring and maintaining our application. It is highly
extensible and deals with the many issues of application bootstrapping for us.
We will be coming back to Zend_Application quite regularly as we add more
functionality to the Storefront that needs to be configured.

With all this done, we can now start creating the rest of the Storefronts components.
In the next chapter, we will look at how we can implement the Model part of the
MVC triad.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models
Before we continue with building the Storefront, we need to cover the Model part
of the MVC triad. The Model represents the business logic within our application.
This contains the most complex part of any application and requires careful thought
before we dive in and start creating it. There are also some Zend Framework specific
problems that we need to overcome before we can use our models.

We will look at the following topics in this chapter:

Models in the Zend Framework
Model design strategy
The Storefront Model implementation
Loading Models and Resources
The SF Library

Models in the Zend Framework
You may be expecting Zend Framework to provide you with a Model. However, it
does not. The reason for this is that the Model represents your business logic and
as such it would be very hard to make a generic implementation of a model as they
are specialized for a certain business task. So a model that consumes a SOAP based
web service would be very different from a model that calculates your tax returns.
Therefore, a generic implementation of a model would cause more problems than
it solves.

The good news is that the Zend Framework provides us with plenty of tools to help
create our models. However, we must be aware of some design rules and strategies
that models can use helpfully. MVC has been around for a fairly long time now and
a lot of the problems that we face have already been solved, and design patterns
have been created for these designs. Obviously, we will still need to make our own
implementations of some of these patterns and make sure that they work effectively
within the Zend Frameworks MVC environment.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[116]

Model design
How we approach the design of our Model is very important. Over the next few
sections we will try to cover some of the rules, ideas, and strategies that can help
us create our Model.

The application stack
Where do I put my code? This is one of the most asked questions that I see when
people talk about Model design and MVC in general. People ask this for good
reason too, as the way our layers (Model-View-Controller) interact with each other
has far reaching implications when it comes to testing and maintaining a code base.
If we do not manage the dependencies with our layers properly, then we could
end up undoing the advantages that MVC offers. The image below shows how
dependencies flow through our application stack:

User Interface

Application

Domain

Infrastructure

View

Controller

Services
Model
Data

Zend Framework
Custom Libraries
Other Libraries

D
epends

Here we can see the application stack with dependencies going in a downward
direction from the highest layer. The dependency chain goes User Interface,
Application, Domain and finally Infrastructure. The rule we try to follow here is
that dependencies should only ever go in a downward direction. For example,
a Model in the Domain should not depend on a View in the User Interface but a
View can depend on a Model. This rule is quite simple but can greatly help with
consistency and also helps when deciding which layer your code should reside
in. Now, like everything in life, there are times when we may need to break this
rule either for simplicity or performance. However, I would suggest that you try
to adhere to it as much as possible, and if you do break it, then make sure you
document it and tell your team!

In our stack, we also have two new concepts that we have not mentioned before,
namely, the Domain and Infrastructure layers. The Domain is a general term
used to describe the business logic within an application. The reason we do not
simply call this layer Model is that we can also have Services and other business
related components within this layer. The Infrastructure layer simply describes any
components that form the basic infrastructure of the application such as the Zend
Framework or our own class libraries.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[117]

Fat Model Skinny Controller
Along with our original question of where we should put our code, there are also
many questions about whether code should reside in either the Controller layer or
the Domain layer. This is where the concept of the Fat Model Skinny Controller
comes in. The idea here is that we should try to push as much logic as possible into
our Domain layer. By doing this, we hope to achieve the following goals:

Reduce code duplication
Enhance readability
Enhance maintainability
Enhance separation of concerns

Fat Controller
Obviously this is easier said than done. Let's go through a brief example to illustrate
this point.

Product Controller

class ProductController extends Zend_Controller_Action
{
 public function listAction()
 {
 $model = new productModel();

 $select = $model->select();
 $select->from(array('p' => 'product'))
 ->where('categoryId', $this->_getParam('catId'));

 $this->view->products = $model->fetchAll($select);
 }
}

Product Model

class ProductModel extends Zend_Db_Table_Abstract
{
 protected $_name = 'product';
 protected $_primary = 'productId';
}

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[118]

The Controller here is considered to be fat as it is doing work that could be
performed by the Model. You can also see that our Model is very skinny and is
simply utilizing Zend_Db_Table for its functionality. For a lot of people (myself
included), when starting out with MVC, the Controller often ends up fat, as it
seems right to use the Model and Controller in this way. However, there are
distinct disadvantages to this technique, which are mentioned as follows:

Code reuse is hard: If another controller needs the product list, then we
would potentially have to copy-and-paste this code into that controller. We
could also call the list Action from the other Controller. However, there is a
performance hit by doing this and none when accessing a Model.
Controller readability is bad: A developer looking at the Controller for the
first time would need to parse a lot of code lines to gather any meaning from
the operation.
Maintainability can be problematic: As we add more functionality to the
Controller, the maintenance cost will rise as we would have a lot of lines in
one Controller.

Fat Model
Let's take our Fat Controller and refactor it to use a Fat Model instead.

Product Controller

class ProductController extends Zend_Controller_Action
{
 public function listAction()
 {
 $model = new ProductModel();

 $this->view->products = $model->getProductsByCategoryId(
 $this->_getParam('catId')
);
 }
}

Product Model

class ProductModel extends Zend_Db_Table_Abstract
{
 protected $_name = 'product';
 protected $_primary = 'productId';

 public function getProductsByCategoryId($id)
 {

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[119]

 $select = $this->select();
 $select->from(array('p' => 'product'))
 ->where('categoryId', $id);

 return $this->fetchAll($select);
 }
}

We have now moved our functionality into the Model by creating a new public
method called getProductsByCategoryId(), and moved the query code from the
Controller into this method.

By doing this we gain the following:

Code reuse is enhanced: Now we can easily reuse this code anywhere in our
application through the Model.
Readability is enhanced: A developer reading this Controller has fewer
lines of code to parse through, and the naming of the Model method speaks
a lot more about the intent of the operation. It is now easy to see that we are
getting a list of products filtered by the categoryId. Naming Model methods
in this way is very useful when creating Models. The more they explain
the operation the better. A long verbose method name that speaks to the
developer is much better than a short one that does not.
Maintainability is easier: Our Controller is now much easier to maintain
with fewer lines of code and a lot less logic contained in it. Also, if our Model
gets too big and hard to maintain, then it is easier to split a Model into
smaller Models than to split a Controller.

As you can see from, a simple refactoring of the code we gain a lot. Obviously this is
a fairly simple example, and in the real world these improvements can be harder to
spot. If you find yourself wondering where your code should reside, then I would
first look at the dependencies in the application stack and then start considering
things like code reuse. Another good rule of thumb is that your Model should be
able to work independently from the Controller and View layers. By doing this,
you automatically get a cleaner separation of concerns, and it helps to identify
what should be included in the Model.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[120]

Model design strategies
So far we have looked at the interaction between the various MVC layers, but we
must also be aware of the various design strategies available to use when actually
implementing our Model/Domain. Now, as a Domain is specialized for a certain
business task, before we start, let me define the context from which this discussion
will be based. As this is a book about the Zend Framework and more importantly the
web based MVC components that it provides, the context for our Domain discussion
is a typical web based scenario, this being a dynamic web site that uses a database
to store data. Therefore, as a Model handles data and logic, we are also interested in
what components the Zend Framework provides that can be used as data sources for
our Models, such as Zend_Db, Zend_Feed, and Zend_Session.

For our examples, we are going to use Zend_Db_Table as the data source for our
Models. This use-case is by far the most common so it is logically fit. Obviously
the data source can be anything we want (even other libraries) but for the purpose
of this discussion we will focus on the relationship between our Models and the
Zend_Db_Table components.

Generally, we have three options available when implementing the data source for a
Model. These are:

Direct inheritance of the data source
Has-a relationship (composition)
A Domain Model

Obviously these are not the only options we have, but I think they mark the
milestones you get as you try to abstract the data source from your Model.

Direct inheritance
Direct inheritance is probably the most common Model implementation you will see.
For example, if we had a Customer Model, then we would directly extend from the
data source gateway class. Don't worry too much about the code here, as it's just an
example. We will be covering Zend_Db_Table later on.

Example of direct inheritance

class Customer extends Zend_Db_Table_Abstract
{
 protected $_name = 'customer';
 protected $_primary = 'customerId';

 // Domain logic here..
}

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[121]

In our example, the Customer Model directly extends from Zend_Db_Table_Abstract
and utilizes the functionality provided by it. We would then use our Model in the
following way:

$customer = new Customer();
$customerWithId1 = $customer->find(1);

When we do this, the Customer Model would return a Zend_Db_Table_Row object
containing the row data from the matched row of the customer table.

Advantages:

Simple and easy to implement

Disadvantages:

Hard to test without a database connection
Breaks the Object Oriented(OO) inheritance principle—A customer is not
a database
Tight-coupling with Zend_Db_Table

This type of Model was popularized by Ruby On Rails but really suffers from some
major drawbacks:

You cannot test your Model without requiring a database. This requirement
can become a problem if you have a large project as your unit tests will get
slower over time. This will make developers reluctant to run them regularly
and defeat the idea of having unit tests at all.
This Model type breaks the OO inheritance principle. This problem's
severity depends on how closely you wish to follow OO practices, but
it is worth considering.

There are some good points to this Model as well, mainly that its implementation is
very simple and quick. It means that it is great for quickly prototyping a system, and
once the prototyping is done, it should not be too hard to port the functionality in a
more maintainable Model design.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[122]

Has-a relationship (composition)
If we want to negate some of the problems caused by inheritance, then the natural
solution is to use composition over inheritance or a has-a relationship. If we go back
to our Customer Model and refactor it to use a has-a relationship, then the Model
will look something like this:

Example of composition

class Customer
{
 protected $_customerTable;

 public function getTable()
 {
 if (null === $this->_customerTable) {
 $this->_customerTable = new CustomerTable();
 }

 return $this->_customerTable;
 }

 public function getCustomerById($id)
 {
 return $this->getTable()->find($id);
 }
}

Here we have a simplified version of a Model using a has-a relationship with its data
source. During the refactoring process we have added getTable() to the table and a
method to find a customer by their unique ID field (getCustomerById()). Using the
Model is similar to the direct inheritance method.

$customer = new Customer();
$customerWithId1 = $customer->getCustomerById(1);

The data returned here again would be a Zend_Db_Table_Row object. However, we
can change this behavior by using the $_rowClass property of Zend_Db_Table and
have it return a row class of our own.

Using a custom row class in Zend_Db_Table

class CustomerTable extends Zend_Db_Table_Abstract
{
 protected $_name = 'customer';
 protected $_primary = 'customerId';
 protected $_rowClass = 'CustomerTableRow';
}

class CustomerTableRow extends Zend_Db_Table_Row_Abstract
{}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[123]

Here we specify the row class we want Zend_Db_Table to use using the
$_rowClass property. Now, when Zend_Db_Table populates its rows, it will use
the CustomerTableRow class. This then enables us to put row level functionality
into the row classes, meaning we can have smart objects rather than just dumb
data containers.

Advantages:

Does not break the OO inheritance principle
Abstracts database from Model
Easier to test without the need for a database

Disadvantages:

More complex to implement
More files to manage

This type of Model is slightly more complex to implement but has some real
advantages over the direct inheritance route. The main reason I like this method is
that you are able to test your Models without needing a database, making your unit
tests easy to run regularly. Also if we ever need to replace our data source with say a
web service, then we can now easily swap it out. All the advantages here really come
from following the OO principle of composition. We do have to work a little to get
everything working, but once you have the infrastructure you're good to go. I would
use this type of Model for medium to large projects. From this we have a lot of scope
to increase the abstraction and scale the project.

Domain Model
Domain Model is actually an enterprise level design pattern. It is concerned solely
with the Domain layer of an application and is highly abstracted from the rest of the
layers in the application, and this high level of abstraction creates a loosely-coupled
domain layer. The high level of abstraction from its other layers allows a Domain
Model to be highly specialized and creates an arena where highly complex business
rules and tasks can be modeled without the worry of interference from things like
database access. Usually, this design pattern is used alongside the Domain Driven
Design methodology, which is used to create a rich cohesive Domain layer.

Domain Modeling and the Domain Model are very big subjects, and for that reason
we will not look at any hard examples here. The real reason for even mentioning it
is that it hopefully shows us how far we can take the abstraction of our layers, as
everything we have covered in this section is really concerned with separating the
duties of our application layers.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[124]

Advantages:

Can handle very complex business logic
Scalable
Maintainable
Highly abstracted
Handles requirement changes easily

Disadvantages

Complex implementation
Overkill for most projects
Getting it right is hard

Implementing a Domain Model is not for the faint-hearted. It requires some serious
infrastructure to really achieve the level of abstraction required to protect the
Domain from outside forces. However by using it, we can fully harness the power of
the OO design and create applications that are maintainable, scalable, and that can
handle the most complex business rules.

Further reading
This brings our Model design discussion to an end. I have probably not done the
subject the justice it deserves, especially when it comes to the Domain Model, but
I hope it has got your interest and showed you in a limited way the possibilities
available while designing your Domain. To me this is really the heart of a
programmer's job and greatly interesting. With this in mind, I could not finish
this section without giving some further reading suggestions.

Here are a couple of the books that I have found useful:

Fowler, M. (November 15, 2002). Patterns Of Enterprise Application
Architecture. Addison-Wesley Professional. 978-0321127426.
Evans, E. (August 30, 2003). Domain-Driven Design: Tackling Complexity in
the Heart of Software. Addison-Wesley Professional. 978-0321125217.
You may also want to look at the Zend_Entity and Zend_Db_Mapper
proposals by Benjamin Eberlei that are on the Zend Framework
Wiki (http://framework.zend.com/wiki/pages/viewpage.
action?pageId=9437243). This proposal outlines an implementation of the
Data Mapper design pattern and can be used to create a Domain Model. We
can also see some of the complexities involved in creating the infrastructure
to support a Domain Model.

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[125]

Storefront Models
Now that we have a general idea of the ways in which we can handle our
Models, let's look at how the Storefront deals with its Models. Here are the basic
requirements for our Models:

•	 Unit testing should be possible without the need for a database
•	 Models should be able to use multiple data sources
•	 Data sources should be loosely-coupled with Models

For our first requirement, we will need to make sure that we can replace our data
sources with stub classes or mock objects so that we can return canned responses
for data. For our second requirement, we will use a has-a relationship with our data
sources. This way our Models can use more than one data source easily. Our final
requirement will help us greatly with unit testing. We will try to create a high level
of abstraction using interfaces and abstract classes.

Okay, with our general requirements outlined for our Models, let's break this down
further and look at some of the objects involved and their relationships.

Model Resources
First we will introduce the concept of Model Resources. We will use the term Model
Resource to generically describe data sources. Models will use Model Resources to
access data. The following image illustrates this relationship:

Model 1 * Model
Resource

Here we can see that our Model has a one-to-many relationship with Model
Resource. Therefore, our Models will contain and have access to multiple Model
Resources. By using Model Resources, we go a step further to satisfying our
requirement that Models should be able to use multiple data sources.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[126]

Managing Model Resources
For our Models to use Model Resources effectively and to create a loosely coupled
architecture that is simple to test, we need to create some infrastructure to handle the
instantiation of our Model Resources.

Model 1 * Model
Resource

Model
Abstract

Our Models will now subclass the abstract Model class that will contain the
functionality for them to be able to instantiate Model Resources in a consistent
manner. We do not need to worry about class file loading here, as we will be using
the Zend_Loader_Autoloader component which will take care of that for us. This is
covered further in the Loading Models and Resources section of this chapter.

Model Resource data sources
So far we have looked at the relationship between Models and their Model
Resources. Now it's time to introduce the data source. The following image shows
the Model-to-Model Resource relationship with the addition of the data source:

Model 1 * Model
Resource

Resource
Interface

Data
Source

We have two new elements, namely, the Resource Interface and the Data Source.
The Model Resource will typically extend from its Data Source. The Data Source
could be Zend_Db_Table, Zend_Feed, though it can also simply use a Data Source
using a has-a relationship. This is where our Model Resources get their Data Source
specific functionality from. However, we also need to protect our Model from Data
Source specific functionality. If we do not, then testing will become difficult. To
achieve this, we use an interface. By adding the Resource Interface, the Model then
has a clean contract for accessing its Model Resource. As long as we only use this
contract to access our Model Resource, we can easily test the Model.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[127]

Model Resource Items
Model Resources will need to return data. What they return is important to us. To
deal with this, we need to define some more objects and relationships. The following
image shows the Model Resources relationship and its returned data:

Resource
Item

1

1

0..1

*Model
Resource

Data
Source

Here we can see that the Model Resource has a one-to-many relationship with
Resource Item. So we can say that Model Resources will always contain many items.
We could also describe the Model Resource as acting like a gateway to our Resource
Items and that all Resource Items must pass through this gateway.

Resource Items may also have a data source. This is generally the case when we are
using Zend_Db_Table as the Model Resource data source, where the Model Resource
will then represent the table and the Resource Item will represent the table row.

Resource Item business logic
Resource Items may also need to contain business logic. The reason for this is that
if we get a Resource Item back from our Model, then we will probably want it to do
something, or else all the Resource Item objects within our system will just be data
containers. The following image shows how we can deal with this new requirement.

Resource
Item

1 *Model
Resource

Resource
Interface

Resource
Item Interface

Just like the Model uses the Resource Interface as a contract to access the Model
Resource, the Model Resource will now use the Resource Item Interface as a contract
to access the Resource Item.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[128]

Let's now review what we have so far. The figure below puts all the aspects that we
have discussed together:

Resource
Item

Data Source

11 ** Model
ResourceModel

Data
Source

Resource
Interface

Model
Abstract

Resource
Item Interface

1

0..1

Has-A Model
Resource

IS-A Data
Source

Has-A Data
Source

Going back to our original requirements for our Models, let's see how we
satisfied them:

Unit testing should be possible without the need for a database: This
is achieved by the use of the Model abstract and by using interfaces to
maintain strict contracts that the Model and Resource classes adhere to.
Models shall be able to use multiple data sources: This is achieved by using
a has-a relationship between Model and Model Resource, meaning that we
can have more than one Model Resource per Model.
Data sources should be loosely-coupled with Models: This is achieved by
abstracting our data source from our Model as much as possible. Again this
is mainly from the use of interfaces and using the has-a relationship.

I have obviously taken some time to come up with this design. However, no design
is perfect, and as the Zend Framework progresses you may find that some of the
ideas I have used can be replaced with Zend Framework components. I would
suggest joining the Zend Frameworks mailing list to keep up with the latest updates.
Also remember that this design may not be correct for your own application.
Remember, to question the design, and be prepared to change or use a different
approach. As always, you need to choose the correct tool for the job.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[129]

Loading Models and Resources
When we come to use our Models, we are going to need some way to load
the class files. To help with this, we can use the Zend_Loader_Autoloader and
Zend_Loader_Autoloader_Resource components. We have already used
Zend_Loader_Autoloader during bootstrapping to enable autoloading of the Zend
and SF library classes, and Zend_Loader_Autoloader_Resource builds upon the
basic autoloading functionality to provide easy loading of application resources.

Zend_Loader_Autoloader_Resource
To load our application resources, we are going to use the resource autoloader. It is
important to note that the word resource used here is not connected to our Model
Resources. This component was created after the Storefront Model implementation
was designed and unfortunately shares the name. A resource in this case is any class
we wish to have autoloaded that is not in our library, and this includes Models,
Model Resources, Forms, Services, or anything else we wish to load.

Resource Autoloading
To use the Resource Autoloader, we need to specify a basepath, namespace, and a set
of resources that the autoloader will load. These terms are explained as follows:

The basepath is the path from which all resources will be loaded
The namespace is the prefix for all resource classes
A resource is a subset of the namespace. Resources have a path
and namespace of their own, which is used to autoload classes within
the basepath

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[130]

After looking at the Storefront's directory structure, let's have a look at an example of
autoloading resources:

If we want to autoload resources within the storefront directory, then we first create
a new Zend_Loader_Autoloader_Resource instance while defining the basepath
and namespace for this set of autoloaders:

$loader = new Zend_Loader_Autoloader_Resource(array(
 'namespace' => 'Storefront',
 'basePath' => '/path/to/modules/storefront',
));

This will add a new Zend_Loader_Autoloader_Resource instance into the
autoloader namespace of Storefront for us, making our autoloader match
classes that are prefixed with Storefront_ and that are located within the
modules/storefront.

Next we need to define some resources to autoload. We can define resources one at a
time or together.

$loader->addResourceType('model', 'models','Model');

$loader->addResourceTypes(array(
 'form' => array(
 'path' => 'forms',
 'namespace' => 'Form',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 4

[131]

),
 'service' => array(
 'path' => 'services',
 'namespace' => 'Service',

),
));

With our resources added to the autoloader, they will now be autoloaded for us
when required. The resources we have defined will load the following class types:

Storefront_Model_ModelName

Storefront_Form_FormName

Storefront_Service_ServiceName

With the resource autoloader configured, we can then load our classes using the
Zend_Loader_Autoloader_Resource or by simply instantiating the class.

// using instantiation
$form = new Storefront_Form_MyForm();

// using the load
$form = $loader->load('MyForm', 'form');'MyForm', 'form');MyForm', 'form');', 'form');, 'form');'form');form');'););

// using the resource getter (proxies to load)
$form = $loader->getForm('MyForm');'MyForm');MyForm');'););

There are many other methods provided by the Resource Autoloader for getting,
setting, defaulting, clearing, and checking the resources managed by it. Check the
reference manual for a full list.

The Resource Autoloader is a valuable tool that we will use to load all of our
application resources. In Chapter 5, we will be configuring the Resource Autoloader
to load our module resources.

The SF Library
To implement our design, we need to create some infrastructure components. We
create these in the SF Library. The SF library is located within the library/SF
directory and its classes are configured to autoload during bootstrapping. A brief
explanation of what each class is used for is given below. However, we will cover
these in more detail as we use them.

SF_Exception: TheThe SF_Exceptionon class is a general exception class used to
throw general application errors. It subclasses the main PHP Exception class.
SF_Model_Interface: TheThe SF_Model_Interfacenterfacece class definesefines the basic
functionality found in all of our Models. This interface is implemented by
the SF_Model_Abstract class and all other Model classes.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Models

[132]

SF_Model_Abstract: TheThe SF_Model_Abstractct class provides the baserovides the base
functionality for all Models. It provides methods for getting Model
Resources, Forms, and initializing Model classes. It implements the
SF_Model_Interface class so that we can easily identify Models by
their type.
SF_Model_Exception: TheThe SF_Model_Exceptionon class is a specialized
exception for models. This class subclasses the SF_Exception class.
SF_Model_Resource_Interface: TheThe SF_Model_Resource_Interfacee_Interfacece
class is an empty interface implemented by Model Resources and is used to
identify classes as Model Resources.
SF_Model_Resource_Db_Interface: TheThe SF_Model_Resource_Db_
Interfacerfacece class defines the extended functionality that Model Resources
contain if they use Zend_Db_Table as their data source.
SF_Model_Resource_Db_Table_Abstract: TheThe SF_Model_Resource_Db_
Table_Abstractbstractct class is useds used when a Model Resources data source is
Zend_Db_Table. This class provides functionality for saving rows that
our Model Resources commonly share.
SF_Model_Resource_Db_Table_Row_Abstract: TheThe SF_Model_Resource_
Db_Table_Row_Abstractbstractstractct class is used to composes used to compose Zend_Db_Table_Row
objects returned by Zend_Db_Table. This implements our has-a relationship
between the Model Resource Item and its data source (Zend_Db_Table_Row).

Summary
In the first part of this chapter, we looked at the application stack and its
dependencies, introduced the concept of the Fat Model Skinny Controller, and
discussed the issues around Model design and how we can abstract them from their
data sources. In the second part, we looked at the Storefront Model design, how to
handle class loading, and took a brief tour of the SF Library. I hope this has inspired
you to think about your Model/Domain and the way in which it is designed. With
all design discussions there are always a lot of opinions and a vast number of ways
to achieve our goals. Remember that there is really no right or wrong way, and you
need to decide what is right for your project. Over the next few chapters, we will
create the components that make up the Storefront. Yes, it's time to start coding
at last.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog
It is finally time to start using some of what we have learned over the first part of
the book. So far, we have created the basic structure of our storefront and looked
at how we might implement our Models. Over the next chapter, we will focus on
implementing the catalog. The catalog will contain our categories and products. To
achieve our goals, we will need to use various Zend Framework components and
some of our own components that form the SF library.

We will be covering the following areas:

Creating the Catalog Model and Resources
Loading Resources
Creating the Catalog Controllers
Creating the Catalog Views

By the end of this chapter, we will have a working catalog that a user will be able
to browse and view the product information stored in the database. So, get your
favorite editor ready and let's start coding.

Getting started
For this chapter, we will be building upon our basic storefront that we created in
Chapter 3. Therefore, you will need to have this ready so that we can add to it.
Additionally, you will need to download the example files for this chapter as they
contain some assets that you will need. Also, make sure that you have set up your
web server to point to the Chapter 3 storefront's public folder. We will need this to
run our application as we build it.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[134]

The example files for this chapter contain the complete catalog implementation. As
we progress through this chapter, you can either follow along by copying the code
from the book, or copy the code segments from the example files. How you approach
this is really up to you as we all learn in different ways. Do whatever you feel is
most comfortable.

Creating the Catalog Model and
Resources
To get started, we need to import some files and folders from the downloaded
Chapter 5 example files. These mainly contain the SF library and some other bits
and pieces like exception classes.

Please copy the following directories and files from the Chapter 5 example files
download package into library/SF of the Chapter 3 application:

library/SF/Model

library/Exception

library/Exception.php

We will explain how all these classes work as we build our Model. They are mainly
used to abstract the Model from the database.

Catalog model skeleton
Let's define the functionality we want to get from our Catalog model. We know that
the Catalog will contain both categories and products. So the basic functions we
want are:

To get categories from the database by parent ID or ident string
To get products from the database by ID or ident string
To get products from the database by category
To get category parents and children

From this, we can create our basic Model skeleton. Now let's add the following to
the storefront:

application/modules/storefront/models/Catalog.php

class Storefront_Model_Catalog extends SF_Model_Abstract
{
 public function getCategoriesByParentId($parentID)

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[135]

 {}

 public function getCategoryByIdent($ident)
 {}

 public function getProductById($id)
 {}

 public function getProductByIdent($ident)
 {}

 public function getProductsByCategory($category, $paged=false,
 $order=null, $deep=true)
 {}

 public function getCategoryChildrenIds($categoryId,
 $recursive = false)
 {}

 public function getParentCategories($category)
 {}
}

Usually, when creating our Model, we would not have this amount of detail because
we would create each method in the way that we require them. In the same way, we
create our unit tests. However, here we already know the detail as the development
has already been done.

Naming conventions
The first important point to cover with our Model is the class naming. The way we
name the class must be consistent so that the autoloader can find and load them. The
convention we have used tries to namespace our Model classes. This is important as
we are using a modular application structure and we do not want any namespace
clashes further down the line.

The general structure for our Model class names is:

ModuleName_Model_ModelName

This is why our Model is called Storefront_Model_Catalog, which then clearly
conveys that this class is part of the Storefront Module and is a Model.

This way of naming our application resources will also be used when we start to add
things like forms, model resources, and service classes. Therefore, a form class in
the Storefront Module would be Storefront_Form_MyForm. We will cover this later
when we add our forms and services. However, from this example, we can see the
advantages of a clear naming convention for our resources.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[136]

Catalog methods
The next aspect of our Catalog Model is its methods. These will provide our
functionality and will contain all of our business logic. Currently, they are empty,
but we will change this shortly. For now, let's look at what each method does.

Method Description
getCategoriesByParentId() Gets a list of categories based on their parent ID.
getCategoryByIdent() Gets a single category based on its ident string.
getProductById() Gets a single product based on its ID.
getProductByIdent() Gets a single product based on its ident string.
getProductsByCategory() Gets a list of products that are contained within

the given category.
getCategoryChildrenIds() Gets a list of children category IDs of a

given category.
getParentCategories() Gets a list of parent categories for a

given category.

The table above describes the basic functionality for each of our Catalog Models
methods. You will notice that the method names are slightly more verbose than
you may be used to. This is an attempt to provide a Fluent Interface to our Model.
The idea of Fluent Interfaces was first coined by Martin Fowler and Eric Evans.
Its purpose is to form a Domain Specific Language, or Ubiquitous Language, that
conveys the functionality of a method or class in a clear way. This makes our code
much easier to read and ascertain its function.

Our Model does not actually use what you would typically see in Fluent Interface
examples. The typical examples use method chaining to achieve fluidity like
PHPUnit's object mocking interface:

$mockObj = $this->getMock('Customer');
$mockObj->expects($this->once())
 ->method('createNewCustomer')
 ->will($this->returnValue(true));

Here we can see that by using method chaining, PHPUnit provides a Fluent Interface
to specify a mock object's operation. However, even without method chaining, we
can still get some of the advantage from the idea of Fluent Interfaces by providing
the details in our method naming. The general rules that have been followed when
creating our method names are as follows:

The method name should describe its function (get, set, save, and so on)
The method name should describe its return type
The method name should describe its possible parameter types

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[137]

By following these rules, we go some way to providing at least a more readable and
clear interface to our business logic.

Catalog Model Resources
With the basic outline for our Model complete, lets move on and look at Model
Resources. If we go back to Chapter 4, we remember that our Models will use Model
Resources to access various data sources. In case of the Catalog Model, this is the
storefront database. To provide access to the database tables that hold our data, we
are going to use Zend_Db_Table. Zend_Db_Table uses the Table Data Gateway
pattern to provide an interface to all rows in a database table. The Table Data
Gateway pattern is defined as:

Table data gateway
An object that acts as a Gateway to a database table. One instance handles all
the rows in the table.
Martin Fowler—Patterns of Enterprise Application Architecture
http://www.martinfowler.com/eaaCatalog/tableDataGateway.html

Therefore, one table instance will handle access to all rows in our database tables.
For the Catalog Model, the tables we will be accessing are product, category,
and productImage. This means that we will need to create three Model Resource
classes (one for each table). For now, let's create the basic skeletons for each of our
Model Resources.

You will need to create the resources directory within application/
modules/storefront/models where resources will be stored.

application/modules/storefront/models/resources/Product.php

class Storefront_Resource_Product extends SF_Model_Resource_Db_Table_
Abstract
{
 protected $_name = 'product';
 protected $_primary = 'productId';
}

application/modules/storefront/models/resources/ProductImage.php

class Storefront_Resource_ProductImage extends
SF_Model_Resource_Db_Table_Abstract
{
 protected $_name = 'productImage';
 protected $_primary = 'imageId';

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[138]

 protected $_referenceMap = array(
 'Image' => array(
 'columns' => 'productId',
 'refTableClass' => 'Storefront_Resource_Product',
 'refColumns' => 'productId',
)
);
}

application/modules/storefront/models/resources/Category.php

class Storefront_Resource_Category extends
SF_Model_Resource_Db_Table_Abstract
{
 protected $_name = 'category';
 protected $_primary = 'categoryId';

 protected $_referenceMap = array(
 'SubCategory' => array(
 'columns' => 'parentId',
 'refTableClass' => 'Storefront_Resource_Category',
 'refColumns' => 'categoryId',
)
);
}

Here, we see that all the resource classes are constructed in a very similar way.
This is because they are using the functionality provided by the Zend_Db_Table_
Abstract of which the SF_Model_Resource_Db_Table_Abstract is a subclass. The
SF_Model_Resource_Db_Table_Abstract contains some functionality that we will
use later when saving data to the database. For now though, we are only going to be
querying the database, not writing to it.

Zend_Db_Table
Let's look at how Zend_Db_Table works to get an idea of what is happening in
our new Model Resource classes. We will only cover a small portion of
Zend_Db_Table's functionality here. However, we will be using most of its
features as we progress through the book. If you are eager to fully understand
Zend_Db_Table at this point, then please consult the reference manual as it contains
very good and detailed documentation for Zend_Db_Table. This can be found at
http://framework.zend.com/manual/en/zend.db.table.html.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[139]

Zend_Db_Table basic usage
To use Zend_Db_Table, we simply need to subclass the Zend_Db_Table_Abstract
class. This class contains all the functionality we need to query, insert, and update
rows in our database tables.

Next, we must tell Zend_Db_Table what table we want it to represent, which is done
by adding a protected property called $_name:

protected $_name = 'product';

If we did not specify the $_name property, then Zend_Db_Table would use the class
name as the table name. However, in our case we have namespaced our classes with
the prefix Strorefront_Resource so we must explicitly specify the table name.

Our next step is to tell Zend_Db_Table what the primary key field is for the table. All
classes that use Zend_Db_Table must have a primary key defined. We specify the
primary key using the protected $_primary property.

protected $_primary = 'productId';

It is important to remember that the primary key does not necessarily have to be an
integer like in the storefront database. For Zend_Db_Table to function, it only needs
a way to uniquely identify a single row. Therefore, your primary key field can be of
any type as long as it is unique. However, by default, Zend_Db_Table does expect
the field to be auto-incrementing or for us to handle sequencing for it. For more
information on handling sequences and primary keys, please consult the
reference manual.

Zend_Db_Table relationships
If we now go back to our basic Model Resources, we can see that
Storefront_Resource_Product is now configured and ready to use. However,
Storefront_Resource_ProductImage and Storefront_Resource_Category have
the extra setting $_referenceMap. In addition to providing a way to read, insert,
update, and delete data from a database table, Zend_Db_Table can also handle table
relationships and dependencies. Relationships allow us to look up referenced table
rows, and dependencies allow us to cascade update and delete operations.

To define a table reference, we use the protected $_referenceMap property. This
expects an associative array containing the reference information for the table.

protected $_referenceMap = array(
 'Image' => array()
);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[140]

For Storefront_Resource_ProductImage, we need to first add a new rule key
to the $_referenceMap array. This is used to uniquely identify the reference. In
this case, we use Image as the relationship that will be used to lookup the products
images. Next, we add the rule keys for the reference.

protected $_referenceMap = array(
 'Image' => array(
 'columns' => 'productId',

 'refTableClass' => 'Storefront_Resource_Product',

 'refColumns' => 'productId',

)
);

Our first rule is columns. This defines the column, or columns (use an array for
multiple columns), for the current table that should be used to match the related
rows. In case of Storefront_Resource_ProductImage, this is the productId field
of the productImage table.

Our second rule is refTableClass. This defines the parent class that this class
references. In case of Storefront_Resource_ProductImage, the parent class is
Storefront_Resource_Product.

Our third rule is refColumns. This defines the parent column, or columns of
the parent table that should be used to match the related rows. In case of
Storefront_Resource_ProductImage, this is the productId field of the
product table.

Optionally, we can also supply onDelete and onUpdate rules. These are used if you
are not using a database that supports declarative referential integrity such as SQLite
or MySQL® MyISAM tables.

Model Resource Items
We now have our main Model Resource classes created. However, we are going
to abstract our design even further by using Model Resource Items. Internally,
Zend_Db_Table uses the row data gateway pattern to represent a single row
in a database table. The row data gateway pattern is defined as:

Row data gateway
An object that acts as a gateway to a single record in a data source. There is
one instance per row.
Martin Fowler—Patterns of Enterprise Application Architecture
http://martinfowler.com/eaaCatalog/rowDataGateway.html

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[141]

Therefore, a row returned by Zend_Db_Table is an instance of the Zend_Db_Table_
Row class. For our purpose, we do not want to use Zend_Db_Table_Row to represent
our rows. This is because we are trying to implement a 'has-a' relationship with the
data sources. To achieve this, we introduce another class per table to represent our
row. We have generically named these classes Model Resource Items.

To implement our design, we need to edit the Model Resource classes to make
them aware of our soon to be created Model Resource Items classes. Let's add the
following to the Model Resource classes:

application/modules/storefront/models/resources/Product.php

class Storefront_Resource_Product extends Zend_Db_Table_Abstract
{
 protected $_name = 'product';
 protected $_primary = 'productId';
 protected $_rowClass = 'Storefront_Resource_Product_Item';

application/modules/storefront/models/resources/ProductImage.php

class Storefront_Resource_ProductImage extends Zend_Db_Table_Abstract
{
 protected $_name = 'productImage';
 protected $_primary = 'imageId';
 protected $_rowClass = 'Storefront_Resource_ProductImage_Item';

application/modules/storefront/models/resources/Category.php

class Storefront_Resource_Category extends Zend_Db_Table_Abstract
{
 protected $_name = 'category';
 protected $_primary = 'categoryId';
 protected $_rowClass = 'Storefront_Resource_Category_Item';

For each of our Model Resources we have added the protected $_rowClass
property. This will tell Zend_Db_Table to use the specified class instead of
Zend_Db_Table_Row.

SF_Model_Resource_Db_Table_Row_Abstract
Before we create our Resource Model Item classes, we must first look at part of the
SF library—namely the SF_Model_Resource_Db_Table_Row_Abstract. We will
use this abstract class to provide the base functionality for all of our Model Resource
Items. The main purpose of the SF Row Abstract is to provide a has-a relationship
(composition) with the row instance (Zend_Db_Table_Row) and provide lazy loading
of item level properties.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[142]

Below is the SF_Model_Resource_Db_Table_Row_Abstract class with the method
body removed for brevity:

library/SF/Model/Resource/Db/Table/Row/Abstract.php

abstract class SF_Model_Resource_Db_Table_Row_Abstract
{
 protected $_row = null;

 public function __construct(array $config = array())

 public function __get($columnName)

 public function __isset($columnName)

 public function __set($columnName, $value)

 public function getRow()

 public function setRow(array $config = array())

 public function __call($method, array $arguments)
}

Let's look at each method:

__construct(): The constructor will be called when Zend_Db_Table creates
a new row. When instantiation occurs, Zend_Db_Table passes in a $config
array. This array contains the data for the row. This is then passed onto the
setRow() method.
setRow(): The setRow() method is responsible for creating a new row
instance that will be used by the Model Resource Item. By default, this is
Zend_Db_Table_Row.
getRow(): The getRow() method is simply an accessor for the $_row
property that contains the Zend_Db_Table_Row instance.
__get(), __set(), __isset(), and __call(): All of these methods simply
proxy to the row instance stored in $_row. This provides an easy way to
composite Zend_Db_Table_Row with our Model Resource Item.
__get(): The __get() method also provides lazy loading of item level
properties. This is done by checking the class for getter methods that
match the queried property. For example, if our Model Resource Item
has the method getImages() and this method gets a dependent row for
instance, we can access this data using $item->images rather than using
$item->getImages(). We will cover more on this later when we implement
the full Catalog Model.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[143]

Creating the Model Resource Items
Creating our Model Resource Items is very straightforward. All we need to do is
subclass the SF_Model_Resource_Db_Table_Row_Abstract class.

Create the following files and directories:

application/modules/storefront/models/resources/Product/Item.php

class Storefront_Resource_Product_Item extends SF_Model_Resource_Db_
Table_Row_Abstract
{
}

application/modules/storefront/models/resources/ProductImage/Item.php

class Storefront_Resource_ProductImage_Item extends SF_Model_Resource_
Db_Table_Row_Abstract
{
}

application/modules/storefront/models/resources/Category/Item.php

class Storefront_Resource_Category_Item extends SF_Model_Resource_Db_
Table_Row_Abstract
{
}

Nice and easy! We now have the basic structure for our Model Resources created.
Next, we will need to add the business logic to our Models.

Implementing the Catalog Model
Now that we have our Model Resources created, we can start implementing the
Catalog Models business logic.

Model Resource interfaces
Before using our Model Resources we need to define what they will do. To help with
this, we are going to add interfaces for both Model Resources and Model Resource
Items. The reason for this is that we can decouple our Model from its resources and
move as much database-specific code as possible into the resources.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[144]

As we continue, let's create the following interfaces for the Model Resources.

application/modules/storefront/models/resources/Category/Interface.php

interface Storefront_Resource_Category_Interface
{
 public function getCategoriesByParentId($parentId);
 public function getCategoryByIdent($ident);
 public function getCategoryById($id);
}

application/modules/storefront/models/resources/Category/Item/
Interface.php

interface Storefront_Resource_Category_Item_Interface
{
 public function getParentCategory();
}

application/modules/storefront/models/resources/Product/Interface.php

interface Storefront_Resource_Product_Interface
{
 public function getProductById($id);
 public function getProductByIdent($ident);
 public function getProductsByCategory($categoryId, $paged=null,
 $order=null);
 public function saveProduct($info);
}

application/modules/storefront/models/resources/Product/Item/
Interface.php

interface Storefront_Resource_Product_Item_Interface
{
 public function getImages($includeDefault=false);
 public function getDefaultImage();
 public function getPrice($withDiscount=true,$withTax=true);
 public function isDiscounted();
 public function isTaxable();
}

application/modules/storefront/models/resources/ProductImage/
Interface.php

interface Storefront_Resource_ProductImage_Interface
{}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[145]

application/modules/storefront/models/resources/ProductImage/Item/
Interface.php

interface Storefront_Resource_ProductImage_Item_Interface
{
 public function thumbnail();
 public function full();
 public function isDefault();
}

We now have clear interfaces that will be used as contracts between the Model and
the Model Resources. Looking at each interface, we can clearly see what functionality
is provided by each resource. For example, the Product Resource Item has the
method isTaxable() that we can use to check whether to add tax or not.

Each Model Resource now needs to implement these contracts and edit the
resources. Doing so causes them to implement their respective interface.

application/modules/storefront/models/resources/Category.php

class Storefront_Resource_Category extends Zend_Db_Table_Abstract
implements Storefront_Resource_Category_Interface

application/modules/storefront/models/resources/Category/Item.php

class Storefront_Resource_Category_Item extends
SF_Model_Resource_Db_Table_Row_Abstract implements
Storefront_Resource_Category_Item_Interface

application/modules/storefront/models/resources/Product.php

class Storefront_Resource_Product extends Zend_Db_Table_Abstract
implements Storefront_Resource_Product_Interface

application/modules/storefront/models/resources/Product/Item.php

class Storefront_Resource_Product_Item extends
SF_Model_Resource_Db_Table_Row_Abstract implements
Storefront_Resource_Product_Item_Interface

application/modules/storefront/models/resources/ProductImage.php

class Storefront_Resource_ProductImage extends Zend_Db_Table_Abstract
implements Storefront_Resource_ProductImage_Item_Interface

application/modules/storefront/models/resources/ProductImage/Item/
Interface.php

class Storefront_Resource_ProductImage_Item extends
SF_Model_Resource_Db_Table_Row_Abstract implements
Storefront_Resource_ProductImage_Item_Interface

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[146]

Our resources now must implement the methods specified in our new interfaces.
These methods will access the database, and in the case of Resource Items, contain
limited business logic.

Before we continue, we must be aware that there are some disadvantages to this
design. The main ones are:

We have more files to maintain
We have business logic in more than one place, Models and Model
Resource Items

Our first issue really comes down to a personal preference of mine. I like the use of
interfaces as they help to define clear boundaries between objects. We could ditch the
interfaces if we wanted with no real adverse affects.

Our second issue is a little more complex and is a consequence of the choice to
include business logic with our Model Resource Item objects. By doing this, we
almost have two Models or one split into at least two!

For example, we have Storefront_Model_Catalog and Storefront_Resource_
Product_Item. Now, both of these contain business logic for products. As we can
see, this could cause confusion. We could correct this by having a separate Product
and Category Model. This would certainly make things clearer. We could also not
put any business logic into the Model Resource Item and run everything through
the Catalog Model. However, by not including any business logic in the Model
Resource Items, all of them will simply become data containers that will need to
be passed back to the Model for business operations to occur. Our final option
would be to move further toward a Domain Model. However, this would require
more infrastructure to be created and for the purposes of this book and indeed the
storefront would probably be a step too far.

The design choices here vary from project to project, and we could easily refactor
later on to correct some of these downfalls. The most important thing is that we are
aware of them.

Model Resource implementation
Now that our resources are implementing their respective interfaces, we need to
implement all the methods defined by them. Let's go through and add these now.
We will explain the functionality as we go.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[147]

Category Model Resource
To start, we will create the getCategoriesByParentId() method.

application/modules/storefront/models/resources/Category.php

public function getCategoriesByParentId($parentId)
{
 $select = $this->select()
 ->where('parentId = ?', $parentId)
 ->order('name');

 return $this->fetchAll($select);
}

We will need to be able to fetch all categories within a category. We do this by
getting all records that match the passed in $parentId parameter. To do this, we
need to create a select statement that we can use to find the records. As our resource
is a subclass of Zend_Db_Table_Abstract, we already have all the tools we need
contained within this class.

We start by getting a new Zend_Db_Table_Select instance using the select()
method of Zend_Db_Table_Abstract. Zend_Db_Table_Select and Zend_Db_
Select allow us to programmatically create select statements. This means we
don't have to worry too much about the actual SQL created as they do this for us.
Moreover, they handle escaping for us as well, so we are safe to pass in dirty data.

We can create very complex statements using the Zend_Db_Select classes. This is
done by calling the corresponding method to the SQL clause we want. For example,
if we want to join table, then we use $select->join(…) or add a having clause by
using $select->having(…). A full detailed description of the various select methods
are available in the reference manual, though we will be covering many of them as
we progress.

In getCategoriesByParentId(), we add a WHERE and an ORDER BY clause to create
the SQL:

WHERE parentId='1'
ORDER BY name DESC, using the where() and order() methods.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[148]

The final part of our method is to actually run the SQL statement and fetch all the
rows that match. We do this by calling the fetchAll() method and passing it the
Zend_Db_Table_Select stored in the $select variable.

application/modules/storefront/models/resources/Category.php

public function getCategoryByIdent($ident)
{
 $select = $this->select()
 ->where('ident = ?', $ident);

 return $this->fetchRow($select);
}

Each of our categories will have a unique identity string that will be used to create
nice URLs like catalog/hats. The getCategoryByIdent() method, just like
getCategoriesByParentId(), creates a select statement and then returns the
result. However, this time we use fetchRow() instead of fetchAll() that, as its
name suggests, fetches a single row from the database. The return value type will
be a Storefront_Resource_Category_Item instance, just as we specified in the
$_rowClass property.

application/modules/storefront/models/resources/Category.php

public function getCategoryById($id)
{
 $select = $this->select()
 ->where('categoryId = ?', $id);

 return $this->fetchRow($select);
}

The getCategoryById() method simply finds a category by its categoryId field and
works just like the getCategoryByIdent() method.

Category Resource Item
Next, we need to create the getParentCategory() method for our Resource Item.

application/modules/storefront/models/resources/Category/Item.php

public function getParentCategory()
{
 return $this->findParentRow(
 'Storefront_Resource_Category',
 'SubCategory'
);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[149]

This will be used to find a category's parent category. Here we are using another nice
feature of Zend_Db_Table which is the table relationships. The findParentRow()
uses the subCategory table relationship we defined in the Category Resource earlier.
The subCategory relationship defines a self-reference on the category table. By using
this, we can easily find a rows parent. To fetch a parent row, we must specify two
things. They are: the table class that the reference is set in, and the name of the rule to
use (in our case, this is Storefront_Resource_Category and SubCategory).

Product Model Resource
Now we need to create the product methods. We start by creating the
getProductById() method.

application/modules/storefront/models/resources/Product.php

public function getProductById($id)
{
 return $this->find($id)->current();
}

The getProductById() method simply fetches a product by its productId field.
This works exactly as in the Category Model Resource's getCategoryById()
method. The only difference here is that we use the find() method instead of
creating our own select statement by using find(). The Zend_Db_Table will
automatically create a select statement that matches the tables primary key field
(productId). The find() method will return a Zend_Db_Table_Rowset instance.
Therefore, as we want a Storefront_Resource_Product_Item instance, we use
current() to get the first row from the rowset.

application/modules/storefront/models/resources/Product.php

public function getProductByIdent($ident)
{
 return $this->fetchRow(
 $this->select()->where('ident = ?', $ident)
);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[150]

The getProductByIdent() method is exactly the same as the
getCategoryByIdent() method in the Category Resource, the only slight difference
is in the syntax style we have used. Usually, we would keep the style consistent, but
in this case, we just wanted to demonstrate the different styles.

application/modules/storefront/models/resources/Product.php

public function getProductsByCategory($categoryId, $paged=null,
 $order=null)
{
 $select = $this->select();
 $select->from('product')
 ->where("categoryId IN(?)", $categoryId);

 if (true === is_array($order)) {
 $select->order($order);
 }

 if (null !== $paged) {
 $adapter = new Zend_Paginator_Adapter_DbTableSelect($select);

 $count = clone $select;
 $count->reset(Zend_Db_Select::COLUMNS);
 $count->reset(Zend_Db_Select::FROM);
 $count->from(
 'product',
 new Zend_Db_Expr(
 'COUNT(*) AS `zend_paginator_row_count`'
)
);
 $adapter->setRowCount($count);

 $paginator = new Zend_Paginator($adapter);
 $paginator->setItemCountPerPage(5)
 ->setCurrentPageNumber((int) $paged);
 return $paginator;
 }

 return $this->fetchAll($select);
}

The getProductsByCategory() is our main method that fetches our product
listings. There is quite a bit of code here, but it really breaks down to two
areas—creating the select statement and paginating the result.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[151]

We create the select statement in the same way that we did in the previous methods.
However, this time we are using an IN clause as we want to be able to get products
from multiple categories at once. When creating clauses that can have multiple
values like IN, we can pass the where() method an array as its second parameter.
Zend_Db_Select will then escape each item and add them into our SQL. The
ordering of the result is optional, so we have wrapped the order clause within an if
statement that checks if the order clause array has been passed in or not. The order
array is simply an array containing order by clauses, for example, array('name
ASC', 'price DESC').

Pagination will be handled by the Zend_Paginator. The $paged parameter is used
to either switch pagination on or off and can either be null (off), or an integer (on)
that contains the current page number. To use Zend_Paginator, we first set up an
adapter to configure our paginator instance. Currently Zend_Paginator has the
following adapters:

Zend_Paginator_Adapter_Array: Paginates an array
Zend_Paginator_Adapter_DbSelect: Paginates a Zend_Db_Select result
Zend_Paginator_Adapter_DbTableSelect: Paginates a Zend_Db_Table_
Select result
Zend_Paginator_Adapter_Iterator: Paginates an object that implements
the PHP SPL Iterator interface
Zend_Paginator_Adapter_Null: Does not calculate anything, but you can
still use the related View Helper

For our purpose, we use the DbTableSelect adapter as we are using
Zend_Db_Table. We start by creating a new instance of, and passing in, the
$select variable we created earlier.

new Zend_Paginator_Adapter_DbTableSelect($select);

Next, we create a select statement that will be used to count the total amount of
rows returned by the main select statement. This is optional, as Zend_Paginator, by
default, will augment the main select statement to count the total rows. However, by
using our own, we have more control over query performance. To create the count
query, we need to duplicate, and then edit, the main select object.

$count = clone $select;
$count->reset(Zend_Db_Select::COLUMNS);
$count->reset(Zend_Db_Select::FROM);
$count->from(
 'product',
 new Zend_Db_Expr(
 'COUNT(*) AS `zend_paginator_row_count`'
)
);

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[152]

Here we first clone the $select variable that contains our main query. This is
important as we do not want to affect the main select statement. We then start to
edit the cloned select statement. Using the reset() method, we reset, or clear, the
columns and from parts of the select statement. We do this so that we can inject
the count query without affecting the where parts. Finally, we create the count
expression by adding a new from part to the select statement and using
Zend_Db_Expr (expression) to add the count clause.

$adapter->setRowCount($count);

$paginator = new Zend_Paginator($adapter);
$paginator->setItemCountPerPage(5)
 ->setCurrentPageNumber((int) $paged);
return $paginator;

Once we have our count query created, we set it on the adapter using
setRowCount(). We can then create a new Zend_Paginator instance and
pass in the adapter. Our final bit of configuration is to set the number of
items per page (setItemCountPerPage()), and set the current page number
(setCurrentPageNumber()). With the paginator now fully configured, we then
return it. Therefore, when pagination is used, getProductsByCategory() will
return a Zend_Paginator instance rather than a Zend_Db_Table_Rowset instance.

Product Resource Item
Now, we need to create the Product Resource Item. This will represent a
single product.

application/modules/storefront/models/resources/Product/Item.php

public function getImages()
{
 return $this->findDependentRowset(
 'Storefront_Resource_ProductImage',
 'Image'
);
}

We have already determined that our products will have images. Therefore,
each product item will need to be able to access the images that go along with it.
The getImages() method gets the current item's related image rows using the
findDependentRowset() rowset method. This works in the same way as we used
findParentRow() in getParentCategory(). To find the dependent rowset, we need
to specify the table class that the relationship is defined in (Storefront_Resource_
ProductImage) and the name of the relationship we want to use (Image). This will
return either null (no images found), or a Zend_Db_Table_Rowset instance.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[153]

application/modules/storefront/models/resources/Product/Item.php

public function getDefaultImage()
{
 $row = $this->findDependentRowset(
 'Storefront_Resource_ProductImage',
 'Image',
 $this->select()
 ->where('isDefault = ?', 'Yes')
 ->limit(1)
)->current();

 return $row;
}

The getDefaultImage() method simply finds the default image for the current
item. We can see that this works in pretty much the same way as the getImages()
method. However, this time we restrict the findDependentRowset() query by
passing in a Zend_Db_Select instance as the third parameter. This simply limits the
query to one row where isDefault is equal to 'Yes'. As findDependentRowset()
returns a Zend_Db_Table_Rowset instance, we also get the current() item from it
and return a single Storefront_Resource_ProductImage_Item instance.

application/modules/storefront/models/resources/Product/Item.php

public function getPrice($withDiscount=true,$withTax=true)
{
 $price = $this->getRow()->price;
 if (true === $this->isDiscounted()
 && true === $withDiscount)
 {
 $discount = $this->getRow()->discountPercent;
 $discounted = ($price*$discount)/100;
 $price = round($price - $discounted, 2);
 }
 if (true === $this->isTaxable() && true === $withTax) {
 $taxService = new Storefront_Service_Taxation();
 $price = $taxService->addTax($price);
 }
 return $price;
}

Our product items all have a price and the price can be discounted. We also need to
add tax if the item is a taxable good. The getPrice() method provides the logic to
calculate the price based on these criteria.

$price = $this->getRow()->price;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[154]

To calculate the price, we first retrieve the price field from the item's table row. This
gives us the base price from which we can apply our calculations.

if (true === $this->isDiscounted()
 && true === $withDiscount)
{
 $discount = $this->getRow()->discountPercent;
 $discounted = ($price*$discount)/100;
 $price = round($price - $discounted, 2);
}

Next, we need to calculate the discount that may be applied to the base price. The
isDiscounted() method will return true if the discount percentage of the row is
greater than zero. Also, we check the $withDiscount parameter. By default, this
is set to true so that the price includes the discount. However, there maybe times
when we just want the base price so we can set the $withDiscount parameter to
false and skip the discount calculation.

The actual discount calculation is just a very simple percentage calculation. We get
the discountPercent from the row, work out the discount amount, and finally
subtract the amount from the base price setting this in the $price variable.

if (true === $this->isTaxable() && true === $withTax) {
 $taxService = new Storefront_Service_Taxation();
 $price = $taxService->addTax($price);
}

The tax calculation works in a very similar way to the discount calculation. Again,
we check if the item is taxable (isTaxable()) and whether the tax calculation is
wanted ($withTax). However, this time we are using a Service to calculate the tax
percentage. The reason for this is mainly an example of a Service. However, Services
play an important role within our Model/Domain. The idea of a Service is that
they provide functionality that does not logically fit within our Model. In the case
of our product, the actual calculation of tax is not really Product related. Also, tax
calculation could become complex and may in the future have its own Model. For
example, if the storefront was to sell to multiple regions, then tax may need to be
calculated on a regional basis.

To use the taxation service, we will need to create it. All of our services for the
storefront will be placed within the services directory within the storefront module
directory. Let's create the taxation service now:

application/modules/storefront/services/Taxation.php

class Storefront_Service_Taxation
{

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[155]

 const TAXRATE = 15;

 public function addTax($amount)
 {
 $tax = ($amount*self::TAXRATE)/100;
 $amount = round($amount + $tax,2);

 return $amount;
 }
}

The Taxation Service class is very simple. It has one class constant TAXRATE that
contains the tax rate, and one method addTax() that adds the tax amount to the
passed in amount.

The final two methods in the Product Resource Item are simply used to check if the
item has a discount and if the item is taxable.

application/modules/storefront/models/resources/Product/Item.php

public function isDiscounted()
{
 return 0 == $this->getRow()->discountPercent ? false : true;
}

public function isTaxable()
{
 return 'Yes' == $this->getRow()->taxable ? true : false;
}

The isDiscounted() method will return true if the rows discount percentage is
above 0. The isTaxable() method will return true if the rows taxable field is 'Yes'.

ProductImage Resource Item
Our final Resource Item is product image. We need to create the various images
related methods for this item.

application/modules/storefront/models/resources/ProductImage/Item.php

public function getThumbnail()
{
 return $this->getRow()->thumbnail;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[156]

The getThumbnail() method is a simple accessor to the rows thumbnail field, which
contains the filename for the thumbnail image.

application/modules/storefront/models/resources/ProductImage/Item.php

public function getFull()
{
 return $this->getRow()->full;
}

The getFull() method is a simple accessor to the rows full field, which contains the
filename for the full-size image.

application/modules/storefront/models/resources/ProductImage/Item.php

public function isDefault()
{
 return 'Yes' === $this->getRow()->isDefault ? true : false;
}

The isDefault() method simply checks if the current item is the default image
or not.

Catalog Model
With all our Model's resources created, we can now implement the methods in the
Catalog Model skeleton we created earlier. Let's go through and implement each
method in turn.

application/modules/storefront/models/Catalog.php

public function getCategoriesByParentId($parentID)
{
 $parentID = (int) $parentID;

 return $this->getResource('Category')
 ->getCategoriesByParentId($parentID);
}

This method returns all the categories that match the passed in parentId. It is
used to find all the categories under another category. We first cast the $parentID
parameter to an integer, and then return the output of the Category Model
Resource's getCategoriesByParentId() method. To access the Category Model
Resource, we use the getResource() method which is defined in the Model
Abstract. By passing in the name of the Model Resource we want, the Category
Model Resource instance is returned.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[157]

application/modules/storefront/models/Catalog.php

public function getCategoryByIdent($ident)
{
 return $this->getResource('Category')
 ->getCategoryByIdent($ident);
}

Here we are doing just the same as in the getCategoriesByParentId() method.
We simply return getResource(), and then return the getCategoryByIdent()
method output.

application/modules/storefront/models/Catalog.php

public function getProductById($id)
{
 $id = (int) $id;

 return $this->getResource('Product')->getProductById($id);
}

Ok, you are probably getting the idea now. Get the Model Resource and return the
Model Resource methods output. Here we are using the Product Model Resource
and the getProductById() method:

application/modules/storefront/models/Catalog.php

public function getProductByIdent($ident)
{
 return $this->getResource('Product')
 ->getProductByIdent($ident);
}

And again, we get the Product Model Resource and return the output of the
getProductByIdent() method:

application/modules/storefront/models/Catalog.php

public function getProductsByCategory($category, $paged=false,
 $order=null, $deep=true)
{
 if (is_string($category)) {
 $cat = $this->getResource('Category')
 ->getCategoryByIdent($category);
 $categoryId = null === $cat ? 0 : $cat->categoryId;
 } else {
 $categoryId = (int) $category;
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[158]

 if (true === $deep) {
 $ids = $this->getCategoryChildrenIds(
 $categoryId, true
);
 $ids[] = $categoryId;
 $categoryId = null === $ids ? $categoryId : $ids;
 }

 return $this->getResource('Product')
 ->getProductsByCategory(
 $categoryId,
 $paged,
 $order
);
}

Now this method has much more logic for us to look at. This method is used to
get all products within or below a category. The method accepts the following
four parameters:

$category: Can either be an integer (categoryId) or a string (ident).
$paged: Is a switch to either get paginated (Zend_Paginator) result or not.
$order: Can be an array containing the order SQL clause(s).
$deep: A switch to either get all products from a category branch or get
products from a single category only.

The logic with this method is to split into three areas—getting the categoryId,
getting the category children, and returning the Model Resource output.

As the $category parameter can be either a string or an integer, the first section tests
if the $category is a string. If the is_string() test returns true, then we then query
the Category Model Resource to get the category by its ident. If a Category is found
for that ident, then we extract the categoryId from it and set it in the $categoryId
variable. Conversely, if the is_string() test return false, then we simply set the
$categoryId variable to the $category parameters value.

The second section is only executed if the $deep parameter is true. If it is, then
we use the getCategoryChildrenIds() method to get an array containing all
the category IDs that are below the category being queried. This functionality will
become much clearer when we implement the controllers and views.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[159]

The third section simply returns the output of the Product Model Resource's
getProductsByCategory() method, just like in the previous methods.

application/modules/storefront/models/Catalog.php

public function getCategoryChildrenIds($categoryId,
 $recursive = false)
{
 $categories = $this->getCategoriesByParentId($categoryId);
 $cats = array();

 foreach ($categories as $category) {
 $cats[] = $category->categoryId;
 if (true === $recursive) {
 $cats = array_merge(
 $cats,
 $this->getCategoryChildrenIds(
 $category->categoryId, true
)
);
 }
 }

 return $cats;
}

This method is a helper method used by the previous getProductsByCategory()
method. It accepts the following two parameters:

$categoryId: The categoryId of the category that we want the child category
IDs from.
$recursive: Whether we want to recursively get the category IDs or not.

We use this method to recursively get an array of the category IDs that are below the
given category.

application/modules/storefront/models/Catalog.php

public function getParentCategories($category)
{
 $cats = array($category);

 if (0 == $category->parentId) {
 return $cats;
 }

 $parent = $category->getParentCategory();
 $cats[] = $parent;

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[160]

 if (0 != $parent->parentId) {
 $cats = array_merge(
 $cats,
 $this->getParentCategories($parent)
);
 }

 return $cats;
}

The getParentCategories() works in the opposite direction as the
getCategoryChildrenIds(), going up the category tree instead of down. Again,
we use recursion to traverse the category tree by having the method call itself.
Additionally, this method returns actual category items rather than an ID array.

Loading Models and other assets
Before we create our Controllers, we are going to need to configure the autoloader to
load our Models and other assets.

Configuring the Autoloader
We now have all our Models, Model Resources, and services created. However,
we will need a way to load these classes when they are required. To do this, we
are going to use the Zend_Application_Module_Autoloader component. This
component is a subclass of the Zend_Loader_Autoloader_Resource component that
we looked at in Chapter 4. The Zend_Application_Module_Autoloader provides
a convenient way to create an autoloader for a particular module as it comes with a
standard set of autoloader resource types preconfigured.

To enable the module autoloader, we need to add a bootstrap class resource to the
Bootstrap class. Add the following resource after the logging resource:

application/bootstrap/Bootstrap.php

protected function _initDefaultModuleAutoloader()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

 $this->_resourceLoader = new
 Zend_Application_Module_Autoloader(array(
 'namespace' => 'Storefront',
 'basePath' => APPLICATION_PATH .
 '/modules/storefront',
));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[161]

 $this->_resourceLoader->addResourceTypes(array(
 'modelResource' => array(
 'path' => 'models/resources',
 'namespace' => 'Resource',
),
 'service' => array(
 'path' => 'services',
 'namespace' => 'Service',
),
));
}

Our DefaultModuleAutoloader bootstrap resource first instantiates a new
Zend_Application_Module_Autoloader instance, assigning it to the protected
$_resourceLoader property. During instantiation, we pass in an array of options
defining the namespace and basePath from which the autoloader will operate. In
this case, this is Storefront and the path to the storefront module directory. The
autoloader will now be registered and will have the default resource types added.
The default resource types are as follows:

Autoloader Resource Namespace Path
dbtable Storefront_Model_

DbTable
APPLICATION_PATH . '/modules/
storefront/models/DbTable'

form Storefront_Form APPLICATION_PATH . '/modules/
storefront/forms'

model Storefront_Model APPLICATION_PATH . '/modules/
storefront/models'

plugin Storefront_Plugin APPLICATION_PATH . '/modules/
storefront/plugins'

api Storefront_Api APPLICATION_PATH . '/modules/
storefront/apis'

After we have instantiated Zend_Application_Module_Autoloader, we need
to customize the default set of autoloader resource types and add two new types
using the addResourceTypes() method. The types we add are modelResource
and service. These will be used to autoload our Model Resources and Services
respectively. The new resource types will have the following properties:

Autoloader Resource Namespace Path
modelResource Storefront_Resource APPLICATION_PATH . '/modules/

storefront/models/resources'

service Storefront_Service APPLICATION_PATH . '/modules/
storefront/services'

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[162]

The Zend_Db_Table bug
The autoloader will now automatically include any class the first time it is used.
We assume this will also work for classes that Zend_Db_Table needs when it
loads dependent table classes. However, this is not the case. All Zend_Db_Table
components explicitly use Zend_Loader::loadClass() to load their dependent
classes. Currently, the loadClass() method does not trigger the autoloader, meaning
that we need to explicitly include any class that a Zend_Db_Table class requires.

As a workaround to this issue, we need to edit our Model Resources. Add the
following to the top of each Model Resource file.

application/modules/storefront/models/resources/Category.php

if (!class_exists('Storefront_Resource_Category_Item')) {
 require_once dirname(__FILE__) . '/Category/Item.php';
}

application/modules/storefront/models/resources/Product.php

if (!class_exists('Storefront_Resource_ProductImage')) {
 require_once dirname(__FILE__) . '/ProductImage.php';
}

if (!class_exists('Storefront_Resource_Product_Item')) {
 require_once dirname(__FILE__) . '/Product/Item.php';
}

application/modules/storefront/models/resources/ProductImage.php

if (!class_exists('Storefront_Resource_ProductImage_Item')) {
 require_once dirname(__FILE__) . '/ProductImage/Item.php';
}

if (!class_exists('Storefront_Resource_Product')) {
 require_once dirname(__FILE__) . '/Product.php';
}

Here we have added a require_once statement to each file that includes the classes,
that the Model Resource depends on. For example, Storefront_Resource_Product
class needs to have its corresponding Resource Item (Storefront_Resource_
Product_Item) included as well as the productImage table class that it uses when
finding dependent image rows from the database. We also wrap the require_once
statement in a class_exists if statement. The class_exists function will check
the autoloader for the class, meaning that the require_once will not be called and
will save us processing time as require_once is slow.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[163]

Hopefully, this issue will be fixed in later versions of the Zend Framework. It is
worth checking this before applying the workaround.

Creating the Catalog Controllers
It is time to move on to our Action Controllers. Remember that we are using the Fat
Model Skinny Controller method. As a result, our controllers are very simple and
merely pass information to the Models and Views.

CategoryController
The CategoryController is used to populate our static top-level category menu,
which is situated in the lefthand column of the main template. This list needs to be
populated at each request because it appears on all of the pages. To achieve this, we
are going to use the Action Stack Plugin and the Response Object.

The Action Stack can be performance-degrading. See the Storefront
Optimization chapter for details.

application/modules/storefront/controllers/CategoryController.php

class Storefront_CategoryController extends Zend_Controller_Action
{
 public function indexAction()
 {
 $id = $this->_getParam('categoryId', 0);
 $catalogModel = new Storefront_Model_Catalog();

 $this->view->categories =
 $catalogModel->getCategoriesByParentId($id);

 $this->_helper
 ->viewRenderer
 ->setResponseSegment(
 $this->_getParam('responseSegment')
);
 }
}

Here we have a standard Action Controller, just as we created earlier for the
Hello Zend application. The Storefront_CategoryController has only one
action, (indexAction). This will control our top-level category menu population.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[164]

Looking at the indexAction, we see that we first get the categoryId parameter
assigning it to the $id variable using the _getParam() method. We also specify a
default value of 0 (zero) to the _getParam() call so that if the categoryId parameter
is not set, it will default to the top-level categories where they all have parentId
of 0 (zero).

Next, we instantiate a new Storefront_Model_Catalog instance and assign it to the
$catalogModel variable. This class will be automatically loaded by the autoloader
we configured earlier.

Once we have the Catalog Model instance, we can then assign the category list to
the view. We do this by calling the getCategoriesByParentId() method and
assigning its returned value to the categories view variable. The return type of the
getCategoiresByParentId() method will be a Zend_Db_Table_Rowset instance.
We will use this later to iterate over the records stored inside the row object to
produce our menu in the View.

The final part of the indexAction is different from what you would usually find in a
normal Controller. As the category top-level menu will be global in our application,
we don't want to accidentally overwrite the $this->view->categories property.
Therefore, we need a way to segregate the top-level menu data from all the other
views. We do this using a Response Object Segment. We have covered these briefly
in Chapter 2, so let's look at how we use them:

$this->_helper
 ->viewRenderer
 ->setResponseSegment(
 $this->_getParam('responseSegment')
);

To write to a Response Segment from within an Action Controller, we use the
viewRenderer Action Helper's setResponseSegment() method. This method
accepts one parameter, $name. This should be a string containing the name of the
segment we want to write to. The viewRenderer will then write the output of the
Action to the named Response Segment in the Response Object.

For extra flexibility we have inserted a user parameter, responseSegment, to specify
the segment name. We can then easily change the segment without needing to
change our Action Controller.

Action Stack Front Controller Plugin
Now that we have a Controller for the category top-level menu, we are going to need
a way to call it on every request. For this, we are going to use the Action Stack.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[165]

The Action Stack is an extension of the Request Dispatch process. Its purpose
is to contain a stack of requests that will be executed once the normal requests
have finished. Therefore, it is processed at the postDispatch event in the Front
Controller. It will not be processed until all normal requests are completed. If we
forward a request, it will wait until that has been completed before the Action Stack
is processed.

As we want to add to the Action Stack on each request, we are going to create a Front
Controller Plugin that hooks into the dispatchLoopStartup hook:

library/SF/Plugin/Action.php

class SF_Plugin_Action extends Zend_Controller_Plugin_Abstract
{
 protected $_stack;

 public function
dispatchLoopStartup(Zend_Controller_Request_Abstract $request)
 {
 $stack = $this->getStack();

 // category menu
 $categoryRequest = new Zend_Controller_Request_Simple();
 $categoryRequest->setControllerName('category')
 ->setActionName('index')
 ->setParam(
 'responseSegment',
 'categoryMain'
);

 // push requests into the stack
 $stack->pushStack($categoryRequest);
 }

 public function getStack()
 {
 if (null === $this->_stack) {
 $front = Zend_Controller_Front::getInstance();
 if (!$front->hasPlugin(
 'Zend_Controller_Plugin_ActionStack'
)) {
 $stack = new Zend_Controller_Plugin_ActionStack();
 $front->registerPlugin($stack);
 } else {
 $stack = $front->getPlugin('ActionStack');
 }
 $this->_stack = $stack;
 }
 return $this->_stack;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[166]

Our SF_PluginAction class has two methods, dispatchLoopStartup() and
getStack(), which hook into the dispatchLoopStartup hook and get the
Action Stack plugin from the Front Controller respectively. If we look at the
dispatchLoopStartup() method, we first see that, we get the Action Stack
plugin and assign it to the $stack variable. We then create a new instance of the
Zend_Controller_Request_Simple class. This class is the most basic Request Object
available in the Zend Framework, and we use it because we do not want all the extra
functionality related to the HTTP Request Object type. Once we have the Request
instance, we create our request:

$categoryRequest->setControllerName('category')
 ->setActionName('index')
 ->setParam(
 'responseSegment',
 'categoryMain'
);

Here, we set the Action Controller to call using setControllerName(), set the
Action to call using setActionName(), and set the user parameter that specifies the
name of the Response Segment using setParam(). This will then give the Dispatcher
all the information it needs to execute our request.

The final job is to add the newly created Request Object to the Action Stack using
$stack->pushStack($categoryRequest). When adding to the Action Stack, it
is important to remember that the stack is executed using a Last In First Out
(LIFO) order.

With our Front Controller Plugin created, we have one small job to do before it will
work. We need to register the plugin with the Front Controller. To do this, add the
following to the store.ini file.

application/config/store.ini

resources.frontcontroller.moduledirectory = APPLICATION_PATH"/modules"
resources.frontcontroller.defaultmodule = "storefront"
resources.frontcontroller.throwerrors = false
resources.frontcontroller.params.prefixDefaultModule = true
resources.frontcontroller.plugins.action = "SF_Plugin_Action"

In this case, we simply add a new option to the frontcontroller bootstrap plugin
resource plugins. This option accepts an array of Front Controller Plugin
classes to register.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[167]

CatalogController
The CatalogController is our main Controller and contains the majority of our
control logic for the storefront (currently) and is responsible for the listing and
viewing of products. To start, let's create the basic structure and add each action
one at a time.

application/modules/storefront/controllers/CatalogController.php

class Storefront_CatalogController extends Zend_Controller_Action
{
 protected $_catalogModel;

 public function init()
 {
 $this->_catalogModel = new Storefront_Model_Catalog();
 }
}

This is our basic controller structure. We have a protected the $_catalogModel
property and a single init() method. The init() method is a Zend Framework
standard and is called every time the Action Controller class is instantiated.
Therefore, we use this to set up our controller-wide properties. In the Catalog
Controller's case, we use init() to set the $_catalogModel property. To this
property, we assign a new Storefront_Model_Catalog instance.

With the basic structure created, let's add the Actions.

application/modules/storefront/controllers/CatalogController.php

public function indexAction()
{
 $products = $this->_catalogModel->getProductsByCategory(
 $this->_getParam('categoryIdent', 0),
 $this->_getParam('page', 1),
 array('name')
);

 $category = $this->_catalogModel
 ->getCategoryByIdent(
 $this->_getParam('categoryIdent', '')
);

 if (null === $category) {
 throw new SF_Exception_404(
 'Unknown category ' .
 $this->_getParam('categoryIdent')
);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[168]

 }

 $subs = $this->_catalogModel
 ->getCategoriesByParentId(
 $category->categoryId
);
 $this->getBreadcrumb($category);

 $this->view->assign(array(
 'category' => $category,
 'subCategories' => $subs,
 'products' => $products
)
);
}

The indexAction is responsible for listing our products. It also needs to page these
results and filter them by category. Our first task then is to get the products from the
Model and assign them to the $products variable. We do this by calling the Catalog
Models getProductsByCategory() method and passing in three parameters. This
will return all products in the current category, plus any products contained within
this category subcategories.

The parameters here are important. For the first parameter, we pass in
$this->_getParam('categoryIdent', 0), which will get the categoryIdent
user parameter from the URI. Therefore, our URI will look something like /catalog/
aCategoryIdent. For the second parameter, we pass in $this->_getParam('page',
1). This will get the current page for the paginator to use. Therefore, our URI will
look like /catalog/aCategoryIdent/page/1. The third parameter is an array
containing the order by field(s). In this case, we have hardcoded it to order by the
name field. For the user parameters to work, we will need to create some routes that
the router can use to match our URIs. We will create these shortly. For now, let's look
at the rest of the indexAction.

We need to get the category so that our view can display its name, and so that
we can throw a 404 exception if the category does not exist. We do this by calling
the getCategoryByIdent() method and passing in the categoryIdent user
parameter. Then, we need to check if the result is null. If it is, then we throw an
SF_Exception_404 exception. This exception is contained within the SF library. For
this to work, we also need to edit the ErrorController so that it knows what to do
with this exception type. Add the following to the errorAction's switch statement:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[169]

application/modules/storefront/controllers/ErrorController.php

case 'SF_Exception_404':
 // send 404
 $this->getResponse()
 ->setRawHeader('HTTP/1.1 404 Not Found');
 $this->view->message = $errors->exception->getMessage();
 break;

Going back to the Catalog Controllers indexAction, our next task is to fetch the
current categories subcategories. To do this, we again access our Model to retrieve
the data. We call the getCategoriesByParentId() method and pass in the current
categories categoryId field ($category->categoryId), storing the result in the
$subs variable.

Our listing will also need a breadcrumb so the user can easily navigate the catalog
structure. To retrieve the breadcrumb data, we use the getBreadcrumb() method
passing in the $category object. When we call the getBreadcrumb() method, it will
assign the bread View property for us.

Our final task is to assign all the data to the View. We do this by using the assign()
method, which accepts a match-pair array of variables to assign to the View. With
this done, our View now has access to all the data we retrieved earlier.

application/modules/storefront/controllers/CatalogController.php

public function viewAction()
{
 $product = $this->_catalogModel->getProductByIdent(
 $this->_getParam('productIdent', 0)
);

 if (null === $product) {
 throw new SF_Exception_404('Unknown product ' .
 $this->_getParam('productIdent'));
 }

 $category = $this->_catalogModel->getCategoryByIdent(
 $this->_getParam('categoryIdent', '')
);
 $this->getBreadcrumb($category);

 $this->view->assign(array(
 'product' => $product,
)
);
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[170]

The viewAction is very similar to the indexAction and is responsible for displaying
the product information to the user. The main operation is to get the product
information from the database using the getProductByIdent() method. To do
this, we pass in the productIdent user parameter. Again, the user parameter
will be taken from the URI. This means our URIs will look similar to /catalog/
aCategoryIdent/aProductIdent. The product object will be stored in the $product
variable. We check if this is null, and if it is, we throw another 404 exception. After
this, just like in the indexAction, we get the current category by its ident and use
this to retrieve the breadcrumb data. We then simply assign the $product object to
the View.

application/modules/storefront/controllers/CatalogController.php

public function getBreadcrumb($category)
{
 $this->view->bread = $this->_catalogModel
 ->getParentCategories($category);
}

As mentioned earlier, the getBreadcrumb() method is a helper used by the
indexAction and viewAction methods. It simply sets the list of parent categories
for the current category in the bread View property.

Storefront routes
To access, and pass in the correct variables to our Controllers, we need to create
some routes that parse the URI to retrieve this information. We will need to create a
new method within the Bootstrap class that configures the routes and adds them into
the Router.

application/bootstrap/Bootstrap.php

protected function _initRoutes()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);
 $this->bootstrap('frontController');

 $router = $this->frontController->getRouter();

 // catalog category product route
 $route = new Zend_Controller_Router_Route(
 'catalog/:categoryIdent/:productIdent',
 array(
 'action' => 'view',
 'controller' => 'catalog',
 'module' => 'storefront',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[171]

 'categoryIdent' => '',
),
 array(
 'categoryIdent' => '[a-zA-Z-_0-9]+',
 'productIdent' => '[a-zA-Z-_0-9]+'
)
);

 $router->addRoute('catalog_category_product', $route);

 // catalog category route
 $route = new Zend_Controller_Router_Route(
 'catalog/:categoryIdent/:page',
 array(
 'action' => 'index',
 'controller' => 'catalog',
 'module' => 'storefront',
 'categoryIdent' => '',
 'page' => 1
),
 array(
 'categoryIdent' => '[a-zA-Z-_0-9]+',
 'page' => '\d+'
)
);

 $router->addRoute('catalog_category', $route);
}

Here we have added a new bootstrap class resource called Routes. This resource will
add two routes for use: catalog_category_product and catalog_category.

The first route will match the URIs to display our product information, for example,
catalog/scarves/a-silk-scarf. To define the route, we instantiate a new
Zend_Controller_Router_Route route passing in the route definition, which
states that:

The first segment must be the string catalog
The second segment must be a string that matches the regex [a-zA-Z-_0-9]+,
will be stored in the categoryIdent user parameter, and will default to an
empty string
The third segment must be a string that matches the regex [a-zA-Z-_0-9]+
and will be stored in the productIdent user parameter
If the URI is matched, then the request should be routed to the view Action
of the Catalog Controller in the storefront module

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[172]

The second route matches our product listing and defines that:

The first segment must be the string catalog
The second segment must be a string that matches the regex [a-zA-Z-_0-9]+,
will be stored in the categoryIdent user parameter, and will default to an
empty string
The third segment must be a number and will be stored in the page user
parameter and defaults to 1 (one)
If the URI is matched, then the request should be routed to the index Action
of the Catalog Controller in the storefront module

When adding routes, beware of the order in which you add them. Routes
are matched in LIFO order. This means that you should put most generic
at the top and the least generic at the bottom.

Once the routes are defined, we need to add them to the Router. We do this by using
the addRoute() method. This method accepts two parameters, the name of the route
and the route instance. The naming of the route is very important, as we will use it
later when creating links in our views. A good practice is to name them so that they
describe what they match.

Creating the Catalog Views
We are reaching the end of our implementation now. All that is left to do is make the
Views display the information. The Views are generally straightforward, so we will
try to get through them as quickly as possible and cover just the important points as
we go along. In addition, the HTML does not format nicely in print, so you may find
it easier to open the View files in your editor to get a clearer picture.

Category views
Let's start by creating the category view that shows the category menu items:
application/modules/storefront/views/scripts/category/index.phtml

<div class="sub-nav">
<h3>select category</h3>

 <? foreach ($this->categories as $category): ?>
 <a href="<?=$this->url(array('categoryIdent'
 => $category->ident), 'catalog_category',
 true);?>"><?=$category->name; ?>
 <? endforeach; ?>

</div>

•
•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[173]

The category index.phtml script is rendered by the Category Controller. This
view iterates over the categories property that contains Storefront_Resource_
Category_Item instances and creates the top-level category menu.

The most important part of this is the way we create our URIs for the anchor tags
href attribute. For this we use the URL View Helper.

$this->url(array(
 'categoryIdent' => $category->ident
),
 'catalog_category',
 true
);

When we link to a category, we want it to be in the format that our routes we
created earlier can match. The first parameter we pass is an array containing the
user parameters to set in the route. In this case, it is categoryIdent. The second
parameter is the name of the route to create the URL from. This will then go back to
the route and create the URL from it. The final parameter tells the route to replace the
route defaults with the passed in user parameters.

Catalog views
Next, let's create a Catalog view:
application/modules/storefront/views/scripts/category/index.phtml

<h3><?= $this->Escape($this->category->name); ?></h3>
<p>
 <?= $this->breadcrumb(); ?>
</p>
<? foreach($this->products as $product): ?>
<div class="productitem clearfix">
 <?=$this->productImage($product->defaultImage, array('class'
 => 'right'))->thumbnail(); ?>
 <h4><a href="<?=$this->url(array('productIdent'
 => $product->ident,
 'categoryIdent' => $this->category->ident),
 'catalog_category_product');
 ?>"><?=$this->Escape($product->name); ?></h4>
 <p><?=$this->Escape($product->shortDescription); ?></p>
 <p><?=$this->productPrice($product); ?></p>
</div>
<? endforeach; ?>

<? if($this->products instanceof Zend_Paginator): ?>
<?= $this->paginationControl($this->products,
 'Sliding',
 'catalog/_paginator.phtml'); ?>
<? endif ?>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[174]

The Catalog index.phtml script is used to display our product listing. This is split
into the following four parts:

Displaying the current category: This is simple and all we need to do is
echo out the $this->category->name property, while making sure that we
escape the output.
Displaying the breadcrumb: To display it, we use the breadcrumb View
Helper, a custom Helper that we will create shortly.
Displaying the product: This works in exactly the same way as the
categories. We iterate over the Views product's property using the URL
helper to create the links to the product items. We also use other custom
View Helpers, productPrice, and productImage. The productPrice helper is
used to display the price information including things like discounts and so
on, and the productImage helper is used to fetch the correct product image.
Displaying the pagination links: This checks if the products View
property is an instance of the Zend_Pagintor class. If it is, then we use the
paginationControl View Helper to display the pagination controls. The
pagination control requires a view script that contains the controls HTML.
We place this inside the catalog view directory. The script is taken directly
from the online reference manual and the only modification we make is to
add the route name into the URL Helper calls. You will need to copy this file
from the example files.

application/modules/storefront/views/scripts/category/view.phtml

<?=$this->productImage($this->product->defaultImage, array('class'
 => 'right'))->full(); ?>
<h3><?=$this->Escape($this->product->name); ?></h3>
<p>
 <?= $this->breadcrumb($this->product); ?>
</p>

<div>
 <p><?=$this->product->description; ?></p>
 <p><?=$this->productPrice($this->product); ?></p>
</div>

<div class="clearfix">
 <? foreach ($this->product->images as $image): ?>
 <? if (!$image->isDefault()): ?>
 <?=$this->productImage($image, array('class' => 'left'))
 ->thumbnail(); ?>
 <? endif; ?>
 <? endforeach; ?>
</div>

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[175]

The Catalog view.phtml script is used to display single product's information. Here,
we are echoing out the Storefront_Resource_Product_Item instances properties,
stored within the Views product property. One important operation is when we get
the product's images using foreach ($this->product->images as $image). This is
using the lazy loading functionality SF_Model_Resource_Db_Table_Row_Abstract.
When we access the images property on the Storefront_Resource_Product_Item
instance, it will proxy to the getImages() method and will automatically fetch the
related image data for us.

application/layouts/scripts/main.phtml

<div id="contentWrap" class="clearfix">
 <div class="left categorylist">
 <?= $this->layout()->categoryMain; ?>
 <? if (0 < count($this->subCategories)):?>
 <div class="sub-nav">
 <h3>in this category</h3>

 <? foreach ($this->subCategories as $category): ?>
 <a href="<?=$this->url(array('categoryIdent'
 => $category->ident), 'catalog_category', true
);?>"><?=$category->name; ?>
 <? endforeach; ?>

 </div>
 <? endif; ?>
 </div>
 <div class="content left">
 <?= $this->layout()->content ?>
 </div>
</div>

To complete our view creation, we need to edit the main layout script. Here, we
have added the top-level category menu, and the subcategory menu. To render the
top-level menu, we echo out the Response Segment that we created in the Category
Controller using $this->layout()->categoryMain;. To render the subcategory
menu, we first check if the subCategory's View property is set, and then simply
iterate over it to create the subcategory menu.

Catalog View Helpers
During our View creation, we have used various View Helpers. We will need to
create these helpers for our Views to function. View Helpers are used to encapsulate
common View-related tasks, and help keep our Views tidy and reduce the amount
of duplication.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[176]

View Helper creation
The creation of a View Helper is very easy. At the minimum, all we need to do
is subclass the Zend_View_Helper_Abstract and name the class correctly. For
the storefront, all our View Helpers are stored within application/modules/
storefront/views/helpers. Paths can also be customized, or added, through
the View instance.

Example View Helper—Myhelper.php

class Zend_View_Helper_Myhelper extends Zend_View_Helper_Abstract
{
 public function myhelper()
 {
 // code here...
 }
}

Here we have created a basic View Helper example. This has the following three
important aspects to it:

It subclasses the Zend_View_Helper_Abstract class. We can also subclass
other View Helpers and extend their functionality.
It is prefixed with the Zend_View_Helper_ prefix. Prefixes can also
be customized.
It has a public method that has the same name as the Helper (MyHelper),
and the filename matches the class name (minus the prefix).

Best practices
A common question about View Helpers is whether they can access Models directly.
The short answer is, yes they can. However, there are some important rules to follow
when dealing with View and Models. If we go back to our Application Stack, we
remember that User Interface is at the top of the stack and the Domain/Model is
below this and that dependencies go in a downward direction. Therefore, it is fine
for our View to depend on a Model, but a Model should not depend on a View.
From this we can surmise the general rule of thumb that:

View Helpers can instantiate Models and use them
View to Model access should be encapsulated within a View Helper
Views should not update the Model (this would create an
upwards dependency)
View to Model access should be avoided if at all possible, and should be
well documented

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[177]

Creating the Catalog View Helpers
Let's now look at the storefront's View Helpers. We will again go through as quickly
as possible, looking at the important parts used within the View Helpers, as most of
the logic is created by HTML.

application/modules/storefront/views/helpers/Breadcrumb.php

class Zend_View_Helper_Breadcrumb extends Zend_View_Helper_Abstract
{
 public function breadcrumb($product = null)
 {
 if ($this->view->bread) {
 $bread = $this->view->bread;
 $crumbs = array();
 $bread = array_reverse($bread);

 foreach ($bread as $category) {
 $href = $this->view->url(array(
 'categoryIdent' => $category->ident,
),
 'catalog_category'
);
 $crumbs[] = '' .
 $this->view->Escape($category->name) . '';
 }

 if (null !== $product) {
 $crumbs[] = $this->view->Escape($product->name);
 }

 return join(' » ', $crumbs);
 }
 }
}

The breadcrumb Helper is used to create the HTML for the breadcrumb navigation.
We can see that we automatically have access to the View from our Helpers through
the Helper's view property ($this->view). This also means that we can use other
View Helpers from within our Helper. For example, we use the URL View Helper to
create our links, and the Escape View Helper to escape our output ($this->view-
>url() and $this->view->Escape()).

application/modules/storefront/views/helpers/ProductImage.php

class Zend_View_Helper_ProductImage extends
Zend_View_Helper_HtmlElement
{
 protected $_image;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[178]

 protected $_attribs;

public function productImage(Storefront_Resource_ProductImage_Item
$image = null, $attribs = false)
 {
 $this->_image = $image;
 $this->_attribs = $attribs;
 return $this;
 }

 public function thumbnail()
 {
 if (null !== $this->_image) {
 return $this->_createImgTag($this->_image->thumbnail);
 }
 }

 public function full()
 {
 if (null !== $this->_image) {
 return $this->_createImgTag($this->_image->full);
 }
 }

 protected function _createImgTag($file)
 {
 if ($this->_attribs) {
 $attribs = $this->_htmlAttribs($this->_attribs);
 } else {
 $attribs = '';
 }

 $tag = 'img src="' . $this->view->baseUrl('images/product/'
 . $file) . '" ';
 return '<' . $tag . $attribs . $this->getClosingBracket()
 . self::EOL;
 }
}

The productImage Helper is used to create an img HTML tag for our product
images. This helper differs from our previous example because this time, we subclass
the Zend_View_Helper_HtmlElement class. The HtmlElement Helper is a standard
helper that is included with the Zend Framework and provides functionality to help
create HTML elements. By subclassing it, we gain access to ways to easily handle
things like HTML attributes, and so on.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[179]

The first thing to note in this helper is that in the productImage() method, we return
a reference of the helper ($this). By doing this, we can provide access to other public
methods within the helper. For example, we can access the full() method from
within our View scripts using $this->productImage()->full(). Have another
look at the View scripts for the full usage.

The second thing to note is the protected _createImgTag() method. This method
will actually create the HTML for us and uses some of its parent class functionality.
The first method we use is _htmlAttribs(). This method accepts an array
containing a matched-pair array of HTML attributes and will return a string ready to
use in our tag. Next, we have the getClosingBracket() method. This will close our
tag and use the correct method for the doctype we have set for our View.

We also use the BaseUrl View Helper. I have taken this from a proposal by Geoffrey
Tran and Robin Skoglund. This helper simply makes sure that when we link to files,
the path will be correct. When doing this, remember to copy this helper from the
example files.
application/modules/storefront/views/helpers/ProductPrice.php

class Zend_View_Helper_ProductPrice extends Zend_View_Helper_Abstract
{
 public function productPrice(Storefront_Resource_Product_Item
 $product)
 {
 $currency = new Zend_Currency();
 $formatted = $currency->toCurrency($product->getPrice());

 if ($product->isDiscounted()) {
 $formatted .= ' was ' . $currency->
 toCurrency($product->getPrice(false)) . '';
 }

 return $formatted;
 }
}

Our final helper is used to display the price of a product. When displaying the price,
we want two things, to display the currency symbol and to display any discount. To
help display the price correctly, we are using Zend_Currency. Zend_Currency is a
locale aware component that will display the correct currency symbol and formatting
for the current locale. Therefore, to use Zend_Currency, we need to configure our
locale, which we do in the Boostrap class.
application/boostrap/bootstrap.php

protected function _initLocale()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[180]

 $locale = new Zend_Locale('en_GB');
 Zend_Registry::set('Zend_Locale', $locale);
}

Here, we simply instantiate a new Zend_Locale instance by passing in our required
locale and then adding the instance to the registry. By adding the locale instance to
the registry using the Zend_Locale key, all Zend Framework components that are
locale aware will now use this instance.

Building and running the storefront
With our implementation complete, we can now run a build and see if everything
has worked. Again to run a build, simply change into the build directory and run the
ant command.

We should then be able to browse our local machine, and if everything goes well,
then we should see the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 5

[181]

Additionally, we should now be able to browse our product catalog:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing the Catalog

[182]

Summary
Hurray, we have a working application! It has been a long one but it was all
worth it in the end. We have covered a lot here, so let's recap the major topics
we have covered.

The implementation of the Model and its Resources took up the majority of this
chapter. Here, we looked at creating Model Data Sources using Zend_Db_Table;
creating Model Resources so that we can implement the has-a relationship between
the Model, Model Resources and Data Sources, and finally creating the Model. This
was by far the most important part of this chapter, and maybe even the book. These
classes, and their design, form the heart of our application and the conventions
used here will be used throughout the rest of the book. Take some time to digest the
process we undertook to create our Model. It can be a little daunting to start with,
but we will be implementing more Models in the coming chapters so we will get
plenty of practice!

We also created our Catalog Controllers, and tried to keep to the Fat Model Skinny
Controller methodology. We pushed as much functionality as possible into the
Model, used the Controllers to simply call the Model methods, and assign data to
the View. We also looked at how we can have global elements such as the top-level
category menu by using the Action Stack and a Front Controller Plugin.

Our final task was to implement the Views so that we could display the data set
by our Controllers. We looked at how to create Views scripts and View Helpers to
encapsulate common behavior shared among our Views.

Now that we have our Catalog working, we can move on to create the Customer
related functionality for the storefront.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts
With our main Catalog functionality completed, we are going to move on and create
the user functionality. The main task here is to provide users with a way to register
at the Storefront so that they can purchase products.

In this chapter, we will cover:

Implementing the user model and resources
Implementing the Customer Controller
Using Zend_Form to create forms
Implementing the Customer Views

As we can see, this follows very much the same process as Chapter 5. The main focus
here is to cover the Zend_Form component and persist our Model data.

Creating the user model and resources
To start us off, we are going to create the user model and its related resources. This
will be exactly as we did in Chapter 5 when we created the Catalog Model. The good
news is, now that we understand how the Model's and Resources work, we can
create our Model very quickly.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[184]

User model
First, we create a new file in our models directory called User.php containing the
Storefront_Model_User class.

application/modules/storefront/models/User.php

class Storefront_Model_User extends SF_Model_Abstract
{
 public function getUserById($id)
 {
 $id = (int) $id;
 return $this->getResource('User')->getUserById($id);
 }

 public function getUserByEmail($email, $ignoreUser=null)
 {
 return $this->getResource('User')
 ->getUserByEmail($email, $ignoreUser);
 }

 public function getUsers($paged=false, $order=null)
 {
 return $this->getResource('User')
 ->getUsers($paged, $order);
 }

 public function registerUser($post)
 {
 $form = $this->getForm('userRegister');
 return $this->_save(
 $form,
 $post,
 array('role' => 'Customer')
);
 }

 public function saveUser($post)
 {
 $form = $this->getForm('userEdit');
 return $this->_save($form, $post);
 }

 protected function _save(Zend_Form $form, array $info,
 $defaults=array())
 {
 if (!$form->isValid($info)) {
 return false;
 }

 // get filtered values

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[185]

 $data = $form->getValues();

 // password hashing
 if (array_key_exists('passwd', $data)
 && '' != $data['passwd']
) {
 $data['salt'] = md5($this->createSalt());
 $data['passwd'] = sha1($data['passwd']
 .$data['salt']);
 } else {
 unset($data['passwd']);
 }

 // apply any defaults
 foreach ($defaults as $col => $value) {
 $data[$col] = $value;
 }

 $user = array_key_exists('userId', $data) ?
 $this->getResource('User')
 ->getUserById($data['userId']) : null;

 return $this->getResource('User')
 ->saveRow($data, $user);
 }

 private function createSalt()
 {
 $salt = '';
 for ($i = 0; $i < 50; $i++) {
 $salt .= chr(rand(33, 126));
 }
 return $salt;
 }
}

The user model contains the following methods:

getUserById(): Fetches a user matched by the userId field
getUserByEmail(): Fetches a user matched by the email field. Optionally,
this method accepts a second parameter that specifies a User to not match
getUsers(): Fetches all users
saveUser(): Creates or updates a User row in the database
registerUser(): Registers a new user
save(): Used internally to perform insert/updates
createSalt(): Creates a salt string to use when hashing our passwords

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[186]

The getUserById(), getUserByEmail(), and getUsers() methods are all very
much like the previous Catalog Model methods, and simply return the output of the
User Model Resource. Therefore, we will concentrate on the methods that are used to
create and update our users, registerUser(), saveUser(), and save().

When saving User data, we are going to have the following four different contexts
when performing these actions:

1. A User registers to the site
2. A registered User edits their details
3. An administrator adds a new User
4. An administrator updates a User's details

To accommodate these rules, we have three data saving methods, registerUser(),
saveUser(), and save(). The reason we use three methods is so that we can have
different input filtering, validation, and default values that meet our contextual
requirements.

The registerUser() method will be used when a new user registers to the site. This
method accepts one parameter, $post, which will contain the HTTP POST data sent
from the registration form. If we look at the registerUser() methods body, we see
that we first get a Zend_Form instance using the getForm() method. This method is
defined in the SF_Model_Abstract class and simply instantiates the requested
form class for us (in this case, this is the Storefront_Form_User_Register
class). When requesting a form using getForm(), we use a camel-cased name,
$this->getForm('userRegister'). This will be rewritten for us by the
Model base class to User_Register.

Now, you may be thinking that we are breaking our dependency rule because Model
should not depend on Interface as Zend_Form is used for display. This assumption
is completely founded when first looking at this. However, Zend_Form internally
is split into three parts, that is, display, input filtering, and validation. This means
that we can simply use the input filtering and validation parts and not worry about
the display. By doing this, we gain a rather handy way to apply input filtering
and validation to our Models. You could even rename the getForm() method to
something like getInputFilter() so that it speaks of its purpose more clearly.

Going back to the registerUser() method, we return the result of the save()
method next, passing in the $form to use, the $post data, and an array containing
the default user role.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[187]

The saveUser() method will be used when Users update their details and when
administrators create users or update user information. Currently, this works in
exactly the same way as the registerUser() method and just uses a different
form instance. We will need to change this when we come to implement the
administration and security aspects of the Storefront. Currently, we have a major
problem in that users can update other user information by passing another userId
in the post! However, we will need authentication and access control to fix this, so
for now we will leave it as it is.

Our final method is save(), which is a protected method that is only used internally
by the class and provides the common functionality for all our user related data
persistence requirements. The save() method accepts three arguments, $form,
$info, and optionally $defaults. These should be a Zend_Form instance, an array
containing the column data, and any default values respectively.

In the save() method body, we first perform data validation:

if (!$form->isValid($info)) {
 return false;
}

Here we use the isValid() method of Zend_Form to run the validation chain. This
will make sure that we have all the fields required to create a valid User. We will
look at how validation works when we create our form classes. If the data passed is
not valid, then it will simply return a false value.

Next, we need to filter our data. We do this by using the getValues() method.

$data = $form->getValues();

The getValue() method of Zend_Form will filter out any values that are not defined
as form elements as well as apply any transformations. All this is defined when we
create the form classes, so we will look at this in detail again when we create them.

Once we have the filtered data, we move on to hashing our passwords. This is done
to add an extra layer of security to our passwords. By hashing our passwords and
using a salt, it hinders a hacker from easily extracting user passwords if the database
is compromised. The salt actually adds a random element to the hashing so that
a hacker cannot use a hash database to brute force the passwords. However, this
method is still weak to dictionary attacks. So if your users have weak passwords,
then they can be easily cracked.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[188]

The control statement we use for the password hashing first checks whether the
password is present and is not blank. If it is blank then we unset it, as when updating
a record we don't want to overwrite the user's password. If a password is present,
then we apply the hashing algorithm to the password and set this as the passwd
field's value.

After this, we apply any defaults that have been passed in, which will either
overwrite or create fields that are not present.

Our final task is to save the data to the database. To do this, we first need to check if
we are updating or inserting a record.

$user = array_key_exists('userId', $data) ?
 $this->getResource('User')
 ->getUserById($data['userId']) : null;

return $this->getResource('User')
 ->saveRow($data, $user);

Here, we first try to retrieve a user from the database if the userId field is set.
If not, then we set User to null. We then pass this to the saveRow() method
along with the $data array. The user instance will then be used to determine if
we should be updating or inserting. The saveRow() method is defined in the
SF_Model_Db_Table_Abstract and is used by all database Models to save data.

User Model Resources
With our User Model created, we can move on to creating the Model Resources. We
will not cover these in detail here, as the functionality was covered in Chapter 5.

application/modules/storefront/models/resources/User/Item/
Interface.php

interface Storefront_Resource_User_Item_Interface
{
 public function getFullname();
}

application/modules/storefront/models/resources/User/Item.php

class Storefront_Resource_User_Item extends
 SF_Model_Resource_Db_Table_Row_Abstract implements
 Storefront_Resource_User_Item_Interface
{
 public function getFullname()
 {
 return $this->getRow()->title .
 ' ' .
 $this->getRow()->firstname .

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[189]

 ' ' .
 $this->getRow()->lastname;
 }
}

application/modules/storefront/models/resources/User/Interface.php

interface Storefront_Resource_User_Interface extends SF_Model_
Resource_Db_Interface
{
 public function getUserById($id);
 public function getUserByEmail($email);
 public function getUsers($paged=false, $order=null);
}

application/modules/storefront/models/resources/User.php

require_once dirname(__FILE__) . '/User/Item.php';

class Storefront_Resource_User extends
 SF_Model_Resource_Db_Table_Abstract implements
 Storefront_Resource_User_Interface
{
 protected $_name = 'user';
 protected $_primary = 'userId';
 protected $_rowClass = 'Storefront_Resource_User_Item';

 public function getUserById($id)
 {
 return $this->find($id)->current();
 }

 public function getUserByEmail($email, $ignoreUser=null)
 {
 $select = $this->select();
 $select->where('email = ?', $email);

 if (null !== $ignoreUser) {
 $select->where('email != ?', $ignoreUser->email);
 }

 return $this->fetchRow($select);
 }

 public function getUsers($paged=false, $order=null)
 {
 if (true === is_array($order)) {
 $select->order($order);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[190]

 }

 if (null !== $paged) {
 $adapter = new
 Zend_Paginator_Adapter_DbTableSelect($select);
 $count = clone $select;
 $count->reset(Zend_Db_Select::COLUMNS);
 $count->reset(Zend_Db_Select::FROM);
 $count->from('user', new Zend_Db_Expr('COUNT(*) AS
 `zend_paginator_row_count`'));
 $adapter->setRowCount($count);

 $paginator = new Zend_Paginator($adapter);
 $paginator->setItemCountPerPage(15)
 ->setCurrentPageNumber((int) $paged);
 return $paginator;
 }
 return $this->fetchAll($select);
 }
}

Here we can see that we have used exactly the same process as in Chapter 5. We
have defined our interfaces so that we have tight contracts for our Model Resources
and have created a Model Resource and a Model Resource item.

Creating the Customer Controller
Now that we have our Model completed, let's move on and create our Customer
Controller. The Customer Controller is straightforward as we are using the Fat
Model Skinny Controller principle. Let's create the Controller now.

application/modules/storefront/controllers/CustomerController.php

class Storefront_CustomerController extends Zend_Controller_Action
{
 protected $_model;

 public function init()
 {
 // get the default model
 $this->_model = new Storefront_Model_User();

 // add forms
 $this->view
 ->registerForm = $this->getRegistrationForm();
 $this->view
 ->loginForm = $this->getLoginForm();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[191]

 $this->view
 ->userForm = $this->getUserForm();
 }

We use the init() method to instantiate our User Model and to assign our forms
to the view.

 public function indexAction()
 {
 $userId = 1; //will be from session
 $this->view
 ->user = $this->_model->getUserById($userId);
 $this->view
 ->userForm = $this->getUserForm()->populate(
 $this->view->user->toArray()
);
 }

The indexAction is used by a user to update their information and displays the user
edit form. Currently, we have hardcoded the $userId variable to the value of 1 as
this will need to come from the session when we add the authentication part of the
Storefront. When assigning the userForm to the View, we populate the form with the
user information from the Storefront_Resource_User_Item that is stored in the
user property of the View. To populate the form, we use the populate() method of
Zend_Form. This method accepts an array of values that will be assigned to the form.
Therefore, we also need to transform the Storefront_Resource_User_Item into an
array using the toArray() method.

 public function saveAction()
 {
 $request = $this->getRequest();

 if (!$request->isPost()) {
 return $this->_helper->redirector('index');
 }

 if (false === $this->_model->saveUser(
 $request->getPost())
) {
 return $this->render('index');
 }
 }

The saveAction is used to update user information so that the form displayed in
indexAction posts its data to this action. This is the first time we have used one of
our User Model's data persistence methods, so let's take a close look at what we have
done here.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[192]

First, we get the Zend_Controller_Request_Http object and assign it to the
$request variable using the getRequest() method. This contains all the data sent
through the form. We then make sure that we actually have some post data using
the Request objects isPost() method. If there is no post data, then we redirect the
user back to the indexAction. To perform the redirect, we use the redirector Action
Helper. This is a standard Action Helper and is generally the best way to perform
HTTP redirects within our Controllers. It is also route aware. Therefore, we can
easily create redirects based on a route in the router.

Next, we try to save the User information to the database using the User Models
saveUser() method. Here, we simply check if the saveUser() method returns
false. If it does, then we render the index View (index.phtml). Notice how we do
not redirect! This is because, if we redirect, then it will create a new HTTP request,
meaning we lose all of our error data. Now when saveUser() returns false, it
means that the form validation has failed. As a result, we re-display the index
View so that we can show the user the form errors. All errors are handled through
Zend_Form so all we need to do is render the form again. Any other errors such as
a database exception will be passed down to the error controller and displayed to
the user.

This is a good example of the Fat Model Skinny Controller principle; the
saveAction is completely dumb and does nothing to the data apart from passing it
to the Model and deciding what should be called or rendered. Our aim is to make all
of our controllers work in this fashion.

 public function registerAction()
 {}

The registerAction is the way we like our Controller Actions, completely blank.
All this action does is it simply renders the register View (register.phtml).

 public function completeRegistrationAction()
 {
 $request = $this->getRequest();

 if (!$request->isPost()) {
 return $this->_helper->redirector('register');
 }

 if (false === ($id = $this->_model
 ->registerUser($request->getPost()))
) {
 return $this->render('register');
 }
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[193]

The completeRegistrationAction follows the same process as the saveAction.
The only real difference is that is uses a different Model method (registerUser())
and redirects and renders the register View.

 public function getRegistrationForm()
 {
 $urlHelper = $this->_helper->getHelper('url');

 $this->_forms['register'] = $this->_model->getForm
 ('userRegister');
 $this->_forms['register']->setAction($urlHelper->url(array(
 'controller' => 'customer' ,
 'action' => 'complete-registration'
),
 'default'
));
 $this->_forms['register']->setMethod('post');

 return $this->_forms['register'];
 }

 public function getUserForm()
 {
 $urlHelper = $this->_helper->getHelper('url');

 $this->_forms['userEdit'] = $this->_model->getForm
 ('userEdit');
 $this->_forms['userEdit']->setAction($urlHelper->url(array(
 'controller' => 'customer' ,
 'action' => 'save'
),
 'default'
));
 $this->_forms['userEdit']->setMethod('post');

 return $this->_forms['userEdit'];
 }

Our final two methods are not Actions but helpers for setting up our form instances.
When we create our forms we do not hardcode the action or method attributes.
Therefore, we need to set these attributes once we have the form instance. If we look
at the getUserForm() method for example, we first retrieve the URL Action Helper
and set in the $urlHelper variable, which will be used to create the action attribute.
Next, we retrieve the actual form instance from the User Model.

$this->_forms['userEdit'] = $this->_model->getForm('userEdit');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[194]

Here we are assigning the return value of getForm() to the 'userEdit' element of the
$_forms array, this will be an instance of the Storefront_Form_User_Edit class.

Once we have our Storefront_Form_User_Edit instance, we can then set the
required attributes. The first attribute we set is action. To create the URL for the
action, we are going to use the URL Action Helper.

$this->_forms['userEdit']->setAction(
 $urlHelper->url(array(
 'controller' => 'customer' ,
 'action' => 'save'
),
 'default'
)
);

This will create a URL to the customer controller's save Action using the default
route, which is /customer/save.

To set the forms method attribute, we simply use the setMethod() form method and
pass in the string 'post'. We then return the newly configured form instance.

Zend_Form
So far, we have used quite a bit of the functionality of Zend_Form. We have used it to
validate and filter our data in our Model and we have configured our form instances.
Now that we know what it can do and how we can use it, we are going to look at
how Zend_Form works and create our User forms.

Basic forms
Before we start creating our User forms, let's first start by looking at what
Zend_Form is.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[195]

What is a Form?
This is an important question, as we need to know what exactly Zend_Form does. A
form created using Zend_Form is comprised of three main areas. They are display,
validation, and filtering. The following image illustrates this:

Display Validation

Filtering

Zend_Form

Zend_Form uses Zend_View for display, Zend_Validate for validation, and
Zend_Filter for filtering. Therefore, Zend_Form is used to manage these three
areas. If we wanted to, we could create our own form handling functionality by
simply using these by themselves. However, using Zend_Form is much easier and
encapsulates all this into one manageable component.

The management of these components is handled through the elements of
Zend_Form. Every Zend_Form will have elements that we define, and each
element carries its own validation, filtering, and display information.

Zend_Form

Element

Element

Element

Filtering

Filtering

Filtering

Validation

Validation

Validation

Display

Display

Display

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[196]

The previous screenshot shows how elements are handled by Zend_Form. When
creating a form, we will need to define each element and additionally configure its
display, validation, and filtering properties.

Creating a Form
There are two ways to create a form using Zend_Form, that is, through a Zend_Form
instance or through inheritance. To start, let's create a standalone script that will
create a form using a Zend_Form instance:

<?php
require_once 'Zend/Loader.php';
Zend_Loader::registerAutoload();

$view = new Zend_View();
$form = new Zend_Form();

$form->setAction('login');
$form->setMethod('post');

$form->addElement('text', 'username', array(
 'label' => 'Username:',
));
$form->addElement('password', 'password', array(
 'label' => 'Password:',
));
$form->addElement('submit', 'submit', array(
 'label' => 'Login',
 'ignore' => true
));
echo $form->render($view);

Here we first instantiate a Zend_View and Zend_Form instance. The View instance is
required to render the form as Zend_Form uses the Zend_View form View Helpers to
create the form element's HTML. We then set the action and method attributes of the
form using the setAction() and setMethod() methods respectively. Next we start
adding the form's elements using the addElement() method. This method accepts
three parameters. They are the type of element, the element name, and an array of
options. For example, for the username field we specify that the element should be a
text input with the name username and the label Username. We will get to the full set
of options a little later.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[197]

Finally, we render our form using the render() method. This will output the
following HTML:

<form method="post"
 action="login"
 enctype="application/x-www-form-urlencoded">
 <dl class="zend_form">
 <dt id="username-label">
 <label class="optional" for="username">Username:</label>
 </dt>
 <dd id="username-element">
 <input type="text" value="" id="username" name="username"/>
 </dd>
 <dt id="password-label">
 <label class="optional" for="password">Password:</label>
 </dt>
 <dd id="password-element">
 <input type="password" value="" id="password"
 name="password"/>
 </dd>
 <dt id="submit-label"></dt>
 <dd id="submit-element">
 <input type="submit" value="Login" id="submit"
 name="submit"/>
 </dd>
 </dl>
</form>

Now we have our first Zend_Form. Currently, it has no validation and if you look at
the HTML, it is not exactly perfect but we have a form nonetheless. Now, let's create
the same form using inheritance.

class LoginForm extends Zend_Form
{
 public function init()
 {
 $this->setAction('login');
 $this->setMethod('post');

 $this->addElement('text', 'username', array(
 'label' => 'Username:',
));
 $this->addElement('password', 'password', array(
 'label' => 'Password:',
));
 $this->addElement('submit', 'submit', array(
 'label' => 'Login',
 'ignore' => true
));
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[198]

We can see that the LoginForm class simply subclasses the form Zend_Form and uses
the special init() method to create the form internally. The init() method is called
in the Zend_Form class constructor. To configure the form and add its elements, we
use exactly the same method as before, apart from the use of $this->addElement(),
as this will produce exactly the same HTML as before.

Customizing Zend_Form's output
Before we move on and create our User forms, we are going to stick with our simple
login form example and look at customizing the Zend_Form display. This is a very
common requirement, and a lot of people have trouble understanding how the
display layer works. However, once you get the hang of it, it is actually very easy.

You may have noticed that the HTML produced earlier was not exactly how we
would want it. If we look closely, then we see that we have an empty <dt> tag for
our submit button.

<dt id="submit-label"></dt>

So how do we fix this? Well the answer is decorators, not the sugary, tea-drinking
type but the objects that are used to decorate the form and its elements. The reason
we call them decorators is because they implement the Decorator design pattern, so
this is probably a good place to start.

The Decorator pattern
The Decorator pattern allows us to add functionality to an object dynamically at
runtime. This is achieved by wrapping the object to be decorated with a decorator
class. The decorator class will have the same API as the wrapped object. By wrapping
the object and replacing calls to that object with calls to the decorator, the decorator
is able to change the behavior of the object. To clarify this, let's look at an example
decorator. We will start by creating the class that will be decorated.

abstract class Math
{
 abstract public function execute();
}

class base extends Math
{
 public function execute()
 {
 return 0;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[199]

Here we have one abstract class named Math that is used to define the object's API
and a concrete class base which we want to decorate. Next we create our abstract
decorator class, which will be used when we create our concrete decorators.

abstract class MathDecorator extends Math
{
 protected $_math;

 public function __construct(Math $math = null)
 {
 $this->_math = $math;
 }
}

Our abstract decorator's constructor accepts one parameter, $math, which is used to
pass in the object we are wrapping. Now we can create our decorators:

class AddOneDecorator extends MathDecorator
{
 public function execute()
 {
 return $this->_math->execute()+1;
 }
}

class MinusTwoDecorator extends MathDecorator
{
 public function execute()
 {
 return $this->_math->execute()-2;
 }
}

Here we have two decorators, AddOneDecorator and MinusTwoDecorator.
These can now be used to decorate the base classe's functionality.

$d = new MinusTwoDecorator(
 new AddOneDecorator(
 new AddOneDecorator(
 new AddOneDecorator(
 new base()
)
)
)
);
echo $d->execute();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[200]

Here we are using the decorators to change the behavior of the base classes
execute() method. We can see that we are able to chain the decorators together to
decorate the object many times. This example will output the value 1 (one), which is
0 + 1 + 1 + 1 - 2.

Zend_Form's Decorators
Right, so now that we have a basic understanding of the Decorator pattern, let's
look at what this means for Zend_Form. The Zend_Form uses decorators to create
the DOM elements that make up the form. The form is split into parts, which are
elements, the form, display groups, and subforms. Each of these parts has their
own set of default decorators that combine to make up the complete form.

Form elements
Elements have five standard decorators, and these are:

ViewHelper
Errors
Description (only renders if a description is set)
HtmlTag
Label

These decorators are registered in the order shown here. Therefore, when an element
is rendered, the call is similar to label(HtmlTag(Description(Errors(
ViewHelper())))). This is pseudo code, but you can see how this is the same
method as in our decorator pattern example. The following screenshot illustrates the
rendering of a Zend_Form element:

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[201]

Here we can see the HTML produced for each element, the decorators used, and the
order in which the decorators are called, and therefore the order in which the HTML
is created.

Each decorator also has a set of options. These options define how the decorator
behaves. By default, the element's decorators have the following options applied
to them:

ViewHelper: placement = APPEND
Errors: placement = APPEND
Description: placement = APPEND, tag = p, class = description
HtmlTag: tag = dd, id = (element name)
Label: placement = PREPEND, tag = dt

We can now see how these settings produce the HTML elements. For example, the
HtmlTag decorator is set to use the <dd> tag to wrap the previous decorator's output.
We have also introduced another important aspect of the decorators here, which
is placement. Placement tells the decorator whether we want it to apply itself to
the start, end, or wrap the previous decorator's output. All decorators support the
placement option apart from the ViewHelper. There are of course many options for
each decorator. For a full list, use the reference manual.

The Form
The Form has three default decorators:

FormElements
HtmlTag (tag=dl)
Form

The following screenshot illustrates the rendering of the Form:

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[202]

We can see that this is very similar to a form element. The most important decorator
here is FormElements. This decorator will iterate over all the form elements, display
groups, and subforms registered with the Zend_Form instance rendering each
element, which in turn renders all the form element decorators.

Display Groups and Subforms
Display Groups and Subforms have the following default decorators:

FormElements
HtmlTag (tag=dl)
Fieldset
DtDdWrapper

The following screenshot illustrates the rendering of a Display Group or Subform:

Fixing the login forms HTML
If we go back to our simple login form example, we can now customize the submit
element's decorators to fix the empty <dt> tag.

Using our first Zend_Form example and a Zend_Form instance, update the
submit element.

$form->addElement('submit', 'submit', array(
 'label' => 'Login',
 'ignore' => true,
 'decorators' => array(
 'ViewHelper',

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[203]

 array(
 'HtmlTag',
 array(
 'tag' => 'dd',
 'id' => 'form-submit'
)
)
)
));

So here we have changed the submit element's decorators from:

ViewHelper
Errors
Description
HtmlTag
Label

To:

ViewHelper
HtmlTag

We have removed three decorators (Errors, Description, and Label). This will now
produce the following HTML:

<dd id="form-submit">
 <input type="submit" value="Login" id="submit" name="submit"/>
</dd>

By doing this, we have now removed the empty <dt> tag. Before we continue
though, let's look at the code we used to define the new set of decorators. To define
the decorators, we add the 'decorators' key to the options array when adding the
element with addElement() and pass in the following array:

array(
 'ViewHelper',
 array(
 'HtmlTag',
 array(
 'tag' => 'dd',
 'id' => 'form-submit'
)
)
)

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[204]

This is where decorators can be confusing, but I promise this becomes easier as you
progress. So here, we have an array containing our decorators. The first decorator
we define is ViewHelper, and this does not need to be configured so we simply
supply the string ViewHelper as an array value. Next, we need to define the HtmlTag
decorator that will wrap the ViewHelper in a <dd> tag. As this needs configuration,
we pass in another array instead of a string.

array(
 'HtmlTag',
 array(
 'tag' => 'dd',
 'id' => 'form-submit'
)
)

The first element in the array is the string 'HtmlTag', which defines the decorator
to use. The second element is an array containing the options for the HtmlTag
decorator, and these options will be passed to the decorator when it is called. The
options we set are tag and id. The tag defines the HTML tag that the ViewHelper
will be wrapped in and the id will set the ID attribute on the tag.

Decorators give us great control over the way Zend_Form creates the HTML forms.
With a bit of perseverance, we can create highly customized layouts. Always try to
keep in mind what the default decorators are, and from there it becomes a lot easier
to create a custom layout.

The User forms
Now that we have completed a few examples, let's move on and create the User
forms. To achieve this, we are going to create a few form classes that will be used
by our User Model. We already know that the validation, filtering, and display
needs to be slightly different depending on what operation the Model is performing.
For example, when registering, the form will have fewer fields than when an
administrator is editing a user. Therefore, we will first create a base form class
and then use inheritance to specialize our forms.

application/modules/storefront/forms/User/Base.php

class Storefront_Form_User_Base extends Zend_Form
{
 public function init()
 {
 // add path to custom validators
 $this->addElementPrefixPath(
 'Storefront_Validate',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[205]

 APPLICATION_PATH .
 '/modules/storefront/models/validate/',
 'validate'
);

 $this->addElement('select', 'title', array(
 'required' => true,
 'label' => 'Title',
 'multiOptions' => array('Mr' => 'Mr','Ms' => 'Ms','Miss'
 => 'Miss','Mrs' => 'Mrs'),
));

 $this->addElement('text', 'firstname', array(
 'filters' => array('StringTrim'),
 'validators' => array(
 'Alpha',
 array('StringLength', true, array(3, 128))
),
 'required' => true,
 'label' => 'Firstname',
));

 $this->addElement('text', 'lastname', array(
 'filters' => array('StringTrim'),
 'validators' => array(
 'Alpha',
 array('StringLength', true, array(3, 128))
),
 'required' => true,
 'label' => 'lastname',
));

 $this->addElement('text', 'email', array(
 'filters' => array('StringTrim', 'StringToLower'),
 'validators' => array(
 array('StringLength', true, array(3, 128)),
 array('EmailAddress'),
 array('UniqueEmail', false, array(new
 Storefront_Model_User())),
),
 'required' => true,
 'label' => 'Email',
));

 $this->addElement('password', 'passwd', array(
 'filters' => array('StringTrim'),
 'validators' => array(

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[206]

 array('StringLength', true, array(6, 128))
),
 'required' => true,
 'label' => 'Password',
));

 $this->addElement('password', 'passwdVerify', array(
 'filters' => array('StringTrim'),
 'validators' => array(
 'PasswordVerification',
),
 'required' => true,
 'label' => 'Confirm Password',
));

 $this->addElement('submit', 'submit', array(
 'required' => false,
 'ignore' => true,
 'decorators' => array('ViewHelper',array('HtmlTag',
 array('tag' => 'dd', 'id' => 'form-submit')))
));

 $this->addElement('hidden', 'userId', array(
 'filters' => array('StringTrim'),
 'required' => true,
 'decorators' => array('viewHelper',array('HtmlTag',
 array('tag' => 'dd', 'class' => 'noDisplay')))
));
 }
}

This is our base user form. It includes all of the elements that we require for our user
forms. All of our other user forms will extend from this form. The base form has the
following elements:

title
firstname
lastname
email
passwd
passwdVerify
submit
userId

Looking at the base form, we see that we are adding elements in the same way as
we did in the example of our earlier login form. However, this time we have
included more options with each element. Let's go through and look at the
important aspects here.

•
•
•
•
•
•
•
•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[207]

A Typical Form element
To start, we will look at the firstname element. This element has quite a standard
configuration that most of our other elements follow and will serve as a good
example for us.

$this->addElement('text', 'firstname', array(
 'filters' => array('StringTrim'),
 'validators' => array(
 'Alpha',
 array('StringLength', true, array(3, 128))
),
 'required' => true,
 'label' => 'Firstname',
));

Here we are creating a text input element with the name firstname. We also pass in
an options array that defines our filters, validators, and other settings.

The first item in our options array is filters. Filters are Zend_Filter classes that are
used to filter the input. The firstname element has one filter named StringTrim.
This filter uses the trim() function to remove extra whitespace from the input. We
can define as many filters as we wish by providing their names within the filters array.
This works much the same way as defining decorators that we looked at earlier.

Our second item is validators. Validators are Zend_Validate classes and are used to
validate the input. We have two validators defined for the firstname element, Alpha
and StringLength. The Alpha validator will make sure the input is alphanumeric
and the StringLength validator will make sure that the string is between 3 and
128 characters long. When defining the StringLength validator, we need to pass in
options for that validator. In order to do this, we use an array instead of a string just
like we did when defining decorators that require options. The first option we pass
to the StringLength validator is a Boolean value (true). This tells the validator to
stop processing the validation chain if validation fails. The validation chain is the
stack of validators we define in the validators array. If we had further validators
after StringLength, then they would not run if StringLength failed. The second
option, which we pass to StringLength is an array containing the parameters for the
validator. These will then be used when the validator is instantiated, and in this case,
we set the min and max parameters for the StringLength validator.

Our third item is required. The required option tells the form whether the item is
required or not. Our final option is label that simply defines the text to use in the
label tag.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[208]

Custom validators
Now that we have looked at an example of a typical form element, let's look at some
of the special elements in the base form that use custom validators. Zend_Form
provides a great number of validators. However, there are always cases where we
need our own validation functionality. Adding this is easy. All we need to do is
create our own validator class that extends from the Zend_Validate_Abstract
class. In the user form, we use two custom validators, namely, UniqueEmail and
PasswordVerification.

Unique email validator
To start, we will create the unique email validator. This will check that the email is
unique when creating a new user. We do this because the users will authenticate
themselves with their email and password.
application/modules/storefront/models/validate/UniqueEmail.php

class Storefront_Validate_UniqueEmail extends Zend_Validate_Abstract
{
 const EMAIL_EXISTS = 'emailExists';

 protected $_messageTemplates = array(
 self::EMAIL_EXISTS =>
 'Email "%value%" already exists in our system',
);

 public function __construct(Storefront_Model_User $model)
 {
 $this->_model = $model;
 }

 public function isValid($value, $context = null)
 {
 $this->_setValue($value);

 $currentUser = isset($context['userId']) ?
 $this->_model->getUserById($context['userId']) : null;

 $user = $this->_model->getUserByEmail($value, $currentUser);

 if (null === $user) {
 return true;
 }

 $this->_error(self::EMAIL_EXISTS);
 return false;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[209]

Firstly, we have created a new directory for our custom validators within the models
directory called validate, and we will store all storefront validators here. Next, we
create the Storefront_Validate_UniqueEmail class, which subclasses the
Zend_Validate_Abstract. All validators follow the same convention and have
two main aspects, namely, errors and validation.

When creating our error types and error messages, we need to define them in
a standard way because each error type and error message can be changed
through setMessage().

const EMAIL_EXISTS = 'emailExists';

protected $_messageTemplates = array(
 self::EMAIL_EXISTS =>
 'Email "%value%" already exists in our system',
);

To define an error type, we create a class constant that contains a string, which will
be used to uniquely identify the error. In this case, we create the EMAIL_EXISTS
constant with the value of emailExists. To define the error message for an error
type, we add an item to the $_messageTemplates array. This item should use the
error type constant as its key and then a string containing the error message as
its value. For the EMAIL_EXISTS error type, we define the error message "Email
"%value%" already exists in our system". When creating an error message,
we can use the placeholder %value%, which will be replaced by the value
being validated.

To add validation to our validator, we use the isValid() method, which is defined
by the Zend_Validate_Interface. The isValid() method will be called when the
validator is executed in the validation chain and will have the value to be validated
passed to it.

public function isValid($value, $context = null)
{
 $this->_setValue($value);

 $currentUser = isset($context['userId']) ?
 $this->_model->getUserById($context['userId']) : null;

 $user = $this->_model->getUserByEmail($value, $currentUser);

 if (null === $user) {
 return true;
 }

 $this->_error(self::EMAIL_EXISTS);
 return false;
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[210]

For the UniqueEmail validator, we first set the value to be validated using the
_setValue() method. This will also clear any previous error messages for this
validator. Next we access our User Model. The User Model is set in the protected
$_model property when the validator is instantiated. The first thing we do with the
User Model is to check whether the userId is set in the post data. The post data
will be stored in the $context parameter of the isValid() method. If the userId
is set, then we get the User that matches that userId. This will then be used by the
getUserByEmail() method.

After we have the $currentUser, which will either be a Storefront_Resource_
User_Item instance or null, we need to find out if the email is already in use. To
do this, we query the User Model using the getUserByEmail() method and pass in
the $value and $currentUser variables. The $value will be the email address, and
the $currentUser will be used to ignore the current user from the query if we are
editing a user.

To validate, we simply check whether $user is null, and if it is, then the email does
not exist and we return true. If the $user is not null, then we set the error using the
_error() method and return false.

Password verification validator
Our second validator is the password verification validator, which is used to
make sure that when a user enters his/her password that he/she has not typed it
incorrectly, by getting them to enter their password twice in the form.

application/modules/storefront/models/validate/PasswordVerification.
php

class Storefront_Validate_PasswordVerification extends
Zend_Validate_Abstract
{
 const NOT_MATCH = 'notMatch';

 protected $_messageTemplates = array(
 self::NOT_MATCH => 'Passwords do not match'
);

 public function isValid($value, $context = null)
 {
 $value = (string) $value;
 $this->_setValue($value);

 if (is_array($context)) {
 if (isset($context['passwd'])
 && ($value == $context['passwd']))
 {
 return true;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[211]

 }
 } elseif (is_string($context) && ($value == $context)) {
 return true;
 }

 $this->_error(self::NOT_MATCH);
 return false;
 }
}

The PasswordVerification validator works in exactly the same way as the
UniqueEmail so we will not go back over it. Generally, we are checking to see
if the passwdVerify field is equal to the passwd field.

Using custom validators, filters, and decorators
Now that we have created our validators, we need to first make our form
elements know where they are. We do this by adding the application/modules/
storefront/models/validate directory to each element of the Plugin Loader.
The Plugin Loader is used internally to load the validators.

$this->addElementPrefixPath(
 'Storefront_Validate',
 APPLICATION_PATH .
 '/modules/storefront/models/validate/',
 'validate'
);

Here we add the path to all the elements in the form using the
addElementPrefixPath() method. This accepts three parameters, namely, the
validator class name prefix, the path, and the path type. The type can be either
validate, filter, or decorator.

With our elements aware of the path to the validators, we can now use them to create
elements just like using the standard validators.

 $this->addElement('text', 'email', array(
 'filters' => array('StringTrim', 'StringToLower'),
 'validators' => array(
 array('StringLength', true, array(3, 128)),
 array('EmailAddress'),
 array('UniqueEmail', false, array(new
 Storefront_Model_User())),
),
 'required' => true,
 'label' => 'Email',
));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[212]

Here is the email element. We can see that we have used the UniqueEmail validator
when creating this element. We give the validator an options array containing a new
Storefront_Model_User instance so that the validator can query the database.

Base form decorators
The final interesting aspect of the base form are the decorators that we use on submit
and hidden form elements.

$this->addElement('submit', 'submit', array(
 'required' => false,
 'ignore' => true,
 'decorators' => array(
 'ViewHelper',
 array(
 'HtmlTag',
 array('tag' => 'dd', 'id' => 'form-submit')
)
),
));

$this->addElement('hidden', 'userId', array(
 'filters' => array('StringTrim'),
 'required' => true,
 'decorators' => array(
 'viewHelper',
 array(
 'HtmlTag',
 array('tag' => 'dd', 'class' => 'noDisplay')
)
),
));

The submit element uses the same set of decorators that we used in the login form
example to get rid of the empty <dt> tag. For the hidden element, we need to do
something a little differently. Here we come to a bug in Zend_Form, by default, the
hidden elements are treated the same as any other element, meaning that they have
a <dt> and <dd> tag. By adding these, we get gaps in the layout wherever we use
hidden elements. Currently there is no way to change this, but this may be fixed in
the future so that hidden elements are appended to the HTML after the <dl> part.
Therefore, to fix this we need to do our own workaround, and the way we do it is by
using a CSS class that hides the <dd> that warps the hidden input element.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[213]

The decorators used for the hidden userId element are:

viewHelper

HtmlTag (tag = dd, class = noDisplay)

Again, like in the submit decorators, we drop the label decorator (<dt>). For the
HtmlTag, we use a <dd> tag but this time we add the CSS class noDisplay. This CSS
class will hide the <dd> tag for us to get rid of our layout gaps.

If we were using many hidden elements, then we would probably want to define the
decorators for this in a method that all our forms could access and simply call that
when adding hidden elements.

$this->addElement('hidden', 'userId', array(
 'filters' => array('StringTrim'),
 'required' => true,
 'decorators' => $this->_hiddenDecorators()
));

Specializing forms
We have our base form but there are going to be situations where we need the form
to behave in a slightly different way. For example, editing a user is very different
from registering a user. To do this we are going to use inheritance, which is a good
way to specialize our form classes using polymorphism. However, remember
that inheritance has its problems in the fact that you need to maintain the entire
inheritance tree. So changes higher up can affect all the classes below. If we were to
have many different uses, then it may be better to use a Decorator Pattern to apply
the specializations.

Let's now create our two form context classes:

application/modules/storefront/forms/User/Register.php

class Storefront_Form_User_Register extends Storefront_Form_User_Base
{
 public function init()
 {
 // make sure parent is called!
 parent::init();

 // specialize this form
 $this->removeElement('userId');
 $this->getElement('submit')->setLabel('Register');
 }
}

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Implementing User Accounts

[214]

application/modules/storefront/forms/User/Edit.php

class Storefront_Form_User_Edit extends Storefront_Form_User_Register
{
 public function init()
 {
 // make sure parent is called!
 parent::init();

 // specialize this form
 $this->getElement('passwd')->setRequired(false);
 $this->getElement('passwdVerify')->setRequired(false);
 $this->getElement('submit')->setLabel('Save User');
 }
}

These are our two forms that will be used by the storefront. They both subclass the
Storefront_Form_User_Base form, and therefore already have all the elements
defined by the base form. To specialize our forms, we again use the init() method.
However, this time we must call the parent::init() method to first create the
base form elements. If we do not do this, then the form will not work. After we
have called the parents init() method, we can start to specialize our forms.

For the Register form, we apply the following specializations:

Remove the userId element
Change the 'submit' button's label to 'Register'

For the Edit form, we apply the following specializations:

Set the passwd element to optional
Set the passwdVerify element to optional
Change the 'submit' button's label to 'Save User'

We can see that the forms are very easy to specialize in this way, and we can quickly
make changes to the base form elements. By doing this, we also give our Models the
ability to understand the different contexts that they are being used in, by the type of
form that is used.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 6

[215]

Creating the Customer Views
Now that we have our Models and Forms created, let's quickly create the Views for
the customers. This is simple, as Zend_Form is doing most of the work for us!

application/modules/storefront/views/scripts/customer/index.phtml

<h3>your account</h3>
<p>
 You can edit your account details below:
</p>
<?=$this->userForm;?>

application/modules/storefront/views/scripts/customer/complete-
registration.phtml

<h3>thank you</h3>
<p>You are now registered and can login.</p>

application/modules/storefront/views/scripts/customer/register.phtml

<h3>new customer</h3>
<p>Please complete the form below to register to the site.</p>
<?=$this->registerForm ?>

Building the application
Right, that's it, done! It's time to build a view to the site. You should now be able to
register at /register and edit the user with userId=1 at /customer. If for some
reason you don't have a user with the userId of 1, then change the $userID variable
in the indexAction of the CustomerController class.

Summary
In this chapter, we have looked at creating some of the functionality for our
Customers. Our Customers can now register to the site. However, the main focus has
been to understand how we can use Zend_Form. With our Customer functionality
complete, we have successfully created our forms, customized them using
decorators, added custom validation, and used Zend_Form as an input filter for our
Models. Over the next few chapters, we will be looking at creating the shopping cart
and the administration area, and at adding user authentication and authorization to
complete our basic storefront.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart
Our next task in creating the storefront is to create the shopping cart. This will allow
users to select the products they wish to purchase. Users will be able to select, edit,
and delete items from their shopping cart.

In this chapter, we will cover:

Creating Models that do not use a database as a data source
Using Zend_Session_Namespace
More Forms, View Helpers, and so on
Implementing the Cart Views and Controllers

Creating the Cart Model and Resources
We will start by creating our model and model resources. The Cart Model differs
from our previous model in the fact that it will use the session to store its data
instead of the database.

Cart Model
The Cart Model will store the products that they wish to purchase. Therefore, the
Cart Model will contain Cart Items that will be stored in the session. Let's create
this class now.

application/modules/storefront/models/Cart.php

class Storefront_Model_Cart extends SF_Model_Abstract implements
SeekableIterator, Countable, ArrayAccess
{
 protected $_items = array();

 protected $_subTotal = 0;

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[218]

 protected $_total = 0;

 protected $_shipping = 0;

 protected $_sessionNamespace;

 public function init()
 {
 $this->loadSession();
 }

 public function addItem(
 Storefront_Resource_Product_Item_Interface $product,
 $qty
)
 {
 if (0 > $qty) {
 return false;
 }

 if (0 == $qty) {
 $this->removeItem($product);
 return false;
 }

 $item = new Storefront_Resource_Cart_Item(
 $product, $qty
);
 $this->_items[$item->productId] = $item;
 $this->persist();
 return $item;
 }

 public function removeItem($product)
 {
 if (is_int($product)) {
 unset($this->_items[$product]);
 }

 if ($product instanceof
 Storefront_Resource_Product_Item_Interface) {
 unset($this->_items[$product->productId]);
 }

 $this->persist();
 }

 public function setSessionNs(Zend_Session_Namespace $ns)
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[219]

 $this->_sessionNamespace = $ns;
 }

 public function getSessionNs()
 {
 if (null === $this->_sessionNamespace) {
 $this->setSessionNs(new
 Zend_Session_Namespace(__CLASS__));
 }
 return $this->_sessionNamespace;
 }

 public function persist()
 {
 $this->getSessionNs()->items = $this->_items;
 $this->getSessionNs()->shipping = $this->getShippingCost();
 }

 public function loadSession()
 {
 if (isset($this->getSessionNs()->items)) {
 $this->_items = $this->getSessionNs()->items;
 }
 if (isset($this->getSessionNs()->shipping)) {
 $this->setShippingCost($this->getSessionNs()->shipping);
 }
 }

 public function CalculateTotals()
 {
 $sub = 0;
 foreach ($this as $item) {
 $sub = $sub + $item->getLineCost();
 }

 $this->_subTotal = $sub;
 $this->_total = $this->_subTotal + (float) $this->_shipping;
 }

 public function setShippingCost($cost)
 {
 $this->_shipping = $cost;
 $this->CalculateTotals();
 $this->persist();
 }

 public function getShippingCost()
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[220]

 $this->CalculateTotals();
 return $this->_shipping;
 }

 public function getSubTotal()
 {
 $this->CalculateTotals();
 return $this->_subTotal;
 }

 public function getTotal()
 {
 $this->CalculateTotals();
 return $this->_total;
 }
/*...*/
}

We can see that the Cart Model class is fairly weighty and in fact, we have not
included the full class here. The reason we have slightly truncated the class is that we
are implementing the SeekableIterator, Countable, and ArrayAccess interfaces.
These interfaces are defined by PHP's SPL Library and we use them to provide a
better way to interact with the cart data. For the complete code, copy the methods
below getTotal() from the example files for this chapter. We will look at what each
method does shortly in the Cart Model implementation section, but first, let's look at
what functionality the SPL interfaces allow us to add.

Cart Model interfaces
The SeekableIterator interface allows us to access our cart data in these ways:

// iterate over the cart
foreach($cart as $item) {}

// seek an item at a position
$cart->seek(1);

// standard iterator access
$cart->rewind();
$cart->next();
$cart->current();

The Countable interface allows us to count the items in our cart:

count($cart);

The ArrayAccess interface allows us to access our cart like an array:

$cart[0];

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[221]

Obviously, the interfaces provide no concrete implementation for the functionality,
so we have to provide it on our own. The methods not listed in the previous code
listing are:

offsetExists($key)

offsetGet($key)

offsetSet($key, $value)

offsetUnset($key)

current()

key()

next()

rewind()

valid()

seek($index)

count()

We will not cover the actual implementation of these interfaces, as they are standard
to PHP. However, you will need to copy all these methods from the example files to
get the Cart Model working.

Documentation for the SPL library can be found at
http://www.php.net/~helly/php/ext/spl/

Cart Model implementation
Going back to our code listing, let's now look at how the Cart Model is implemented.
Let's start by looking at the properties and methods of the class.

The Cart Model has the following class properties:

$_items: An array of cart items
$_subTotal: Monetary total of cart items
$_total: Monetary total of cart items plus shipping
$_shipping: The shipping cost
$_sessionNamespace: The session store

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[222]

The Cart Model has the following methods:

init(): Called during construct and loads the session data
addItem(Storefront_Resource_Product_Item_Interface $product,
$qty): Adds or updates items in the cart
removeItem($product): Removes a cart item
setSessionNs(Zend_Session_Namespace $ns): Sets the session instance to
use for storage
getSessionNs(): Gets the current session instance
persist(): Saves the cart data to the session
loadSession(): Loads the stored session values
calculateTotals(): Calculates the cart totals
setShippingCost($cost): Sets the shipping cost
getShippingCost(): Gets the shipping cost
getSubTotal(): Gets the total cost for items in the cart (not including
the shipping)
getTotal(): Gets the subtotal plus the shipping cost

When we instantiate a new Cart Model instance, the init() method is called. This
is defined in the SF_Model_Abstract class and is called by the __construct()
method. This enables us to easily extend the class's instantiation process without
having to override the constructor.

The init() method simply calls the loadSession() method. This method populates
the model with the cart items and shipping information stored in the session. The
Cart Model uses Zend_Session_Namespace to store this data, which provides an
easy-to-use interface to the $_SESSION variable. If we look at the loadSession()
method, we see that it tests whether the items and shipping properties are set in the
session namespace. If they are, then we set these values on the Cart Model.

To get the session namespace, we use the getSessionNs() method. This method
checks if the $_sessionNs property is set and returns it. Otherwise it will lazyload
a new Zend_Session_Namespace instance for us. When using Zend_Session_
Namespace, we must provide a string to its constructor that defines the name of the
namespace to store our data in. This will then create a clean place to add variables
to, without worrying about variable name clashes. For the Cart Model, the default
namespace will be Storefront_Model_Cart.

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[223]

The Zend_Session_Namespace component provides a range of functionality that we
can use to control the session. For example, we can set the expiration time as follows:

$ns = new Zend_Session_Namespace('test');
$ns->setExpirationSeconds(60, 'items');
$ns->setExpirationHops(10);
$ns->setExpirationSeconds(120);

This code would set the item's property expiration to 60 seconds and the
namespaces expiration to 10 hops (requests) or 120 seconds, whichever is
reached first. The useful thing about this is that the expiration is not global.
Therefore, we can have specialized expiration per session namespace. There is
a full list of Zend_Session_Namespace functionalities in the reference manual.

Testing with Zend_Session and Zend_Session_Namespace
Testing with the session components can be fairly difficult. For the Cart
Model, we use the setSessionNs() method to allow us to inject a mock
object for testing, which you can see in the Cart Model unit tests. There
are plans to rewrite the session components to make testing easier in the
future, so keep an eye out for those updates.

To add an item to the cart, we use the addItem() method. This method accepts two
parameters, $product and $qty. The $product parameter must be an instance of
the Storefront_Resource_Product_Item class, and the $qty parameter must be an
integer that defines the quantity that the customer wants to order.

If the addItem() method receives a valid $qty, then it will create a new Storefront_
Resource_Cart_Item and add it to the $_items array using the productId as the
array key. We then call the persist() method. This method simply stores all the
relevant cart data in the session namespace for us. You will notice that we are not
using a Model Resource in the Cart Model and instead we are directly instantiating a
Model Resource Item. This is because the Model Resources represent store items and
the Cart Model is already doing this for us so it is not needed.

To remove an item, we use the removeItem() method. This accepts a single
parameter $product which can be either an integer or a Storefront_Resource_
Product_Item instance. The matching cart item will be removed from the
$_items array and the data will be saved to the session. Also, addItem() will call
removeItem() if the quantity is set to zero.

The other methods in the Cart Model are used to calculate the monetary totals for the
cart and to set the shipping. We will not cover these in detail here as they are fairly
simple mathematical calculations.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[224]

Cart Model Resources
Now that we have our Model created, let's create the Resource Interface and concrete
Resource class for our Model to use.

application/modules/storefront/models/resources/Cart/Item/Interface.php

interface Storefront_Resource_Cart_Item_Interface
{
 public function getLineCost();
}

The Cart Resource Item has a very simple interface that has one method,
getLineCost(). This method is used when calculating the cart totals in the
Cart Model.

application/modules/storefront/models/resources/Cart/Item.php

class Storefront_Resource_Cart_Item implements Storefront_Resource_
Cart_Item_Interface
{
 public $productId;
 public $name;
 public $price;
 public $taxable;
 public $discountPercent;
 public $qty;

 public function __construct(Storefront_Resource_Product_Item_
 Interface $product, $qty)
 {
 $this->productId = (int) $product->productId;
 $this->name = $product->name;
 $this->price = (float) $product->getPrice(false,false);
 $this->taxable = $product->taxable;
 $this->discountPercent = (int) $product->discountPercent;
 $this->qty = (int) $qty;
 }

 public function getLineCost()
 {
 $price = $this->price;

 if (0 !== $this->discountPercent) {
 $discounted = ($price*$this->discountPercent)/100;
 $price = round($price - $discounted, 2);
 }

 if ('Yes' === $this->taxable) {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[225]

 $taxService = new Storefront_Service_Taxation();
 $price = $taxService->addTax($price);
 }

 return $price * $this->qty;
 }
}

The concrete Cart Resource Item has two methods __construct() and
getLineCost(). The constructor accepts two parameters $product and $qty that
must be a Storefront_Resource_Product_Item_Interface instance and integer
respectively. This method will then simply copy the values from the product instance
and store them in the matching public properties. We do this because we do not
want to simply store the product instance because it has all the database connection
data contained within. This object will be serialized and stored in the session.

The getLineCost() method simply calculates the cost of the product adding tax and
discounts and then multiplies it by the given quantity.

Shipping Model
We also need to create a Shipping Model so that the user can select what type
of shipping they would like. This Model will simply act as a data store for some
predefined shipping values.

application/modules/storefront/models/Shipping.php

class Storefront_Model_Shipping extends SF_Model_Abstract
{
 protected $_shippingData = array(
 'Standard' => 1.99,
 'Special' => 5.99,
);

 public function getShippingOptions()
 {
 return $this->_shippingData;
 }
}

The shipping Model is very simple and only contains the shipping options and a
single method to retrieve them. In a normal application, shipping would usually
be stored in the database and most likely have its own set of business rules. For the
Storefront, we are not creating a complete ordering process so we do not need
these complications.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[226]

Creating the Cart Controller
With our Model and Model Resources created, we can now start wiring the
application layer together. The Cart will have a single Controller, CartController
that will be used to add, view, and update cart items stored in the Cart Model.

application/modules/storefront/controllers/CartController.php

class Storefront_CartController extends Zend_Controller_Action
{
 protected $_cartModel;
 protected $_catalogModel;

 public function init()
 {
 $this->_cartModel = new Storefront_Model_Cart();
 $this->_catalogModel = new Storefront_Model_Catalog();
 }

 public function addAction()
 {
 $product = $this->_catalogModel->getProductById(
 $this->_getParam('productId')
);

 if(null === $product) {
 throw new SF_Exception(
 'Product could not be added to cart as it does not exist'
);
 }

 $this->_cartModel->addItem(
 $product, $this->_getParam('qty')
);

 $return = rtrim(
 $this->getRequest()->getBaseUrl(), '/'
) . $this->_getParam('returnto');

 $redirector = $this->getHelper('redirector');

 return $redirector->gotoUrl($return);
 }

 public function viewAction()
 {
 $this->view->cartModel = $this->_cartModel;
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[227]

 public function updateAction()
 {
 foreach($this->_getParam('quantity') as $id => $value)
 {
 $product = $this->_catalogModel
 ->getProductById($id);
 if (null !== $product) {
 $this->_cartModel->addItem($product, $value);
 }
 }
 $this->_cartModel->setShippingCost(
 $this->_getParam('shipping')
);

 return $this->_helper->redirector('view');
 }
}

The Cart Controller has three actions that provide a way to:

add: add cart items
view: view the cart contents
update: update cart items

The addAction() first tries to find the product to be added to the cart. This is
done by searching for the product by its productId field, which is passed either in
the URL or by post using the Catalog Model. If the product is not found, then we
throw an SF_Exception stating so. Next, we add the product to the cart using the
addItem() method. When adding the product, we also pass in the qty. The qty can
again be either in the URL or post.

Once the product has been successfully added to the cart, we then need to redirect
back to the page where the product was added. As we can have multiple locations,
we send a returnto variable with the add request. This will contain the URL to
redirect back to, once the item has been added to the cart. To stop people from
being able to redirect away from the storefront, we prepend the baseurl to the
redirect string. To perform the actual redirect, we use the redirector Action Helper's
gotoUrl() method. This will create an HTTP redirect for us.

The viewAction() simply assigns the Cart Model to the cartModel View property.
Most of the cart viewing functionality has been pushed to the Cart View Helper and
Forms, which we will create shortly.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[228]

The updateAction() is used to update the Cart Items already stored in the cart. The
first part of this updates the quantities. The quantities will be posted to the Action as
an array in the quantity parameter. The array will contain the productId as the array
key, and the quantity as the value. Therefore, we iterate over the array finding the
product by its ID and adding it to the cart. The addItem() method will then update
the quantity for us if the item exists and remove any with a zero quantity. Once
we have updated the cart quantities, we set the shipping and redirect back to
the viewAction.

Creating the Cart Views and Forms
Now that we have our Model and Controller created, we can now start putting
everything together and get the cart working.

Cart forms
The Cart will use two forms Storefront_Form_Cart_Add and Storefront_Form_
Cart_Table. The add form is displayed next to the products so users can add items
to the Cart, and the table form is used to display all the items in the cart so users can
edit them.

Add form
The add form can be used by customers browsing the store to quickly add items to
their shopping cart. This form will look like the one shown in the screenshot below
when it is rendered:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[229]

Let's add the code to create the add form now.

application/modules/storefront/forms/Cart/Add.php

class Storefront_Form_Cart_Add extends SF_Form_Abstract
{
 public function init()
 {
 $this->setDisableLoadDefaultDecorators(true);

 $this->setMethod('post');
 $this->setAction('');

 $this->setDecorators(array(
 'FormElements',
 'Form'
));

 $this->addElement('text', 'qty', array(
 'decorators' => array(
 'ViewHelper'
),
 'style' => 'width: 20px;',
 'value' => 1
));

 $this->addElement('submit', 'buy-item', array(
 'decorators' => array(
 'ViewHelper'
),
 'label' => 'Add to cart'
));

 $this->addElement('hidden', 'productId', array(
 'decorators' => array(
 'ViewHelper'
),
));
 $this->addElement('hidden', 'returnto', array(
 'decorators' => array(
 'ViewHelper'
),
));
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[230]

The add form contains four elements—qty, buy-item, productId, and returnto.
We can see that it is much like the other forms we have created previously. The only
major difference here is that we use the setDisableLoadDefaultDecorators()
method to disable the default decorators for the form (not the elements). We do this
because we do not want the form to contain the default definition list markup (<dl>).
We also only use the ViewHelper decorator on each element so that the <dt> and
<dd> tags are omitted.

Table form
The table form is going to form the customer shopping cart. Customers will use this
form to view, update, and remove items from their cart. This form will look similar
to the one showed below when it is rendered:

Let's add the code for the table form now:

application/modules/storefront/forms/Cart/Table.php

class Storefront_Form_Cart_Table extends SF_Form_Abstract
{
 public function init()
 {
 $this->setDisableLoadDefaultDecorators(true);

 $this->setDecorators(array(
 array(
 'ViewScript',
 array('viewScript' => 'cart/_cart.phtml')
),
 'Form'
));

 $this->setMethod('post');
 $this->setAction('');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[231]

 $this->addElement('submit', 'update-cart', array(
 'decorators' => array(
 'ViewHelper'
),
 'label' => 'Update'
));
 }
}

The table form is highly specialized. Therefore, we have chosen to use a
ViewScript decorator. To do this, we first disable the default decorators
using the setDisableLoadDefaultDecorators().

We then need to configure the forms decorators. We will only have two decorators
for the form, ViewScript and Form. This means that if we render the form, the
update-cart element will not be rendered because we have not included the
FormElements decorator. This is where the ViewScript decorator comes in. We
can use this decorator to render a View script, in this case cart/_cart.phtml.
We then have access to all the elements within the form inside this View script,
meaning we can create highly specialized markup without needing to use lots of
complicated decorators.

Also, the table form will need to have fields dynamically added to it as we need a
form element for each cart item. We will look at this shortly when we create the
View Helper and Views for the Cart.

The ViewScript decorator uses a View Partial to render its view script.
This has an overhead as it clones the view instance. Generally, partials
should be avoided in large numbers so do not over use them or the
ViewScript decorator.

SF_Form_Abstract
You may have noticed that our forms did not subclass Zend_Form as in our previous
examples. Also, this time we have extended from the SF_Form_Abstract class. This
is because we have done some minor refactoring to the SF library so that we can
inject the Model into the form.

library/SF/Form/Abstract.php

class SF_Form_Abstract extends Zend_Form
{
 protected $_model;

 public function setModel(SF_Model_Interface $model)
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[232]

 $this->_model = $model;
 }

 public function getModel()
 {
 return $this->_model;
 }
}

The new SF_Form_Abstract class subclasses Zend_Form and adds two new
methods, setModel() and getModel(). These simply set, and get, the protected
$_model property. This then means that when we instantiate the form, we can pass
in the model inside the options array.

$form = new SF_Form_Abstract(array('model' => new myModel()));

Here we are taking advantage of the fact that the setOptions() method will look
for setters that match elements in the options array. In our case, the setOptions()
class will find the setModel() method, call it, and pass in the model. This type of
functionality is very common in Zend Framework components. It is always worth
checking the setOptions() methods on components to see if you can extend them
in this way.

To get the model injected on instantiation, we also need to make a minor change to
the SF_Model_Abstract.

library/SF/Model/Abstract.php

public function getForm($name)
{
 if (!isset($this->_forms[$name])) {
 $class = join('_', array(
 $this->_getNamespace(),
 'Form',
 $this->_getInflected($name)
));
 $this->_forms[$name] = new $class(

 array('model' => $this)

);

 }
 return $this->_forms[$name];
}

Here, we simply pass in an array containing the model ($this) when we first
instantiate the form class. We now have access to our Model from within our forms.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[233]

Cart View Helper
The Cart View Helper is responsible for creating many of the display elements for
the cart. Therefore, we will break it down and look at each method in turn.

application/modules/storefront/views/helpers/Cart.php

class Zend_View_Helper_Cart extends Zend_View_Helper_Abstract
{
 public $cartModel;

 public function Cart()
 {
 $this->cartModel = new Storefront_Model_Cart();

 return $this;
 }

The main Cart() method instantiates a new Cart Model and then returns a reference
to itself so that we can chain calls to the other methods.

application/modules/storefront/views/helpers/Cart.php

 public function getSummary()
 {
 $currency = new Zend_Currency();
 $itemCount = count($this->cartModel);

 if (0 == $itemCount) {
 return '<p>No Items</p>';
 }

 $html = '<p>Items: ' . $itemCount;
 $html .= ' | Total: '.$currency->toCurrency
 ($this->cartModel->getSubTotal());
 $html .= '
<a href="';
 $html .= $this->view->url(array(
 'controller' => 'cart',
 'action' => 'view',
 'module' => 'storefront'
),
 'default',
 true
);
 $html .= '">View Cart</p>';

 return $html;
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[234]

The getSummary() method creates the HTML that will be used to display a
summary of the cart items and subtotal to the user. This will be displayed below
the main category menus.

application/modules/storefront/views/helpers/Cart.php

 public function addForm(Storefront_Resource_Product_Item
 $product)
 {
 $form = $this->cartModel->getForm('cartAdd');
 $form->populate(array(
 'productId' => $product->productId,
 'returnto' => $this->view->url()
));
 $form->setAction($this->view->url(array(
 'controller' => 'cart',
 'action' => 'add',
 'module' => 'storefront'
),
 'default',
 true
));
 return $form;
 }

The addForm() method will return a form for adding a single product to the
cart. This method accepts one parameter $product that must be an instance of
Storefront_Resource_Product_Item. We will use this to render individual add to
cart forms for each product.

application/modules/storefront/views/helpers/Cart.php

 public function cartTable()
 {
 $cartTable = $this->cartModel->getForm('cartTable');
 $cartTable->setAction($this->view->url(array(
 'controller' => 'cart' ,
 'action' => 'update'
),
 'default'
));

 $qtys = new Zend_Form_SubForm();

 foreach($this->cartModel as $item) {
 $qtys->addElement('text', (string) $item->productId,
 array(

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[235]

 'value' => $item->qty,
 'belongsTo' => 'quantity',
 'style' => 'width: 20px;',
 'decorators' => array(
 'ViewHelper'
),
)
);
 }
 $cartTable->addSubForm($qtys, 'qtys');

 // add shipping options
 $cartTable->addElement('select', 'shipping', array(
 'decorators' => array(
 'ViewHelper'
),
 'MultiOptions' => $this->_getShippingMultiOptions(),
 'onChange' => 'this.form.submit();',
 'value' => $this->cartModel->getShippingCost()
));

 return $cartTable;
 }

The cartTable() method will return the table containing all our cart items, their
costs, and totals. This will be used to update items in the cart. We create a subform
to dynamically add the cart items quantity elements at runtime. The reason we use
a subform is so we can easily get the whole set of quantity fields from the form, and
later iterate over them in the View script.

The form will need to contain an array of quantity text elements so that we can
iterate over them in the updateAction in the controller. To create this array, we
pass the belongsTo option to the addElement() method, which will tell the form
that these elements are an array with the name quantity. We also set the value of
the element to the qty held in the cart item. We also need a way of passing the
productId for each cart item. To do this, we set the element name to the productId
of the item. This also helps us by providing a unique name for each element
(we have to cast this to a string). It will create a set of text form elements like:

<input type="text" style="width: 20px;" value="1" id="quantity-21"
name="quantity[21]"/>

<input type="text" style="width: 20px;" value="5" id="quantity-10"
name="quantity[10]"/>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[236]

Once we have all the quantity elements in the subform, we then add the whole
subform to the main table form using the addSubForm() method. We give this the
name of qtys, which we will use in the View script later to retrieve the elements.

We also add the shipping options to the main table form. Here, we use the
_getShippingMultiOptions() method to populate the select elements options
and set the value to the currently selected shipping option of the cart.

application/modules/storefront/views/helpers/Cart.php

 public function formatAmount($amount)
 {
 $currency = new Zend_Currency();
 return $currency->toCurrency($amount);
 }

The formatAmount() method is a little helper method we use to display amounts
from the Cart. This may not be necessary in the future as there is a proposal for a
currency View Helper that we would use instead.

application/modules/storefront/views/helpers/Cart.php

 private function _getShippingMultiOptions()
 {
 $currency = new Zend_Currency();
 $shipping = new Storefront_Model_Shipping();
 $options = array(0 => 'Please Select');

 foreach($shipping->getShippingOptions() as $key => $value) {
 $options["$value"] = $key . ' - ' . $currency-
 >toCurrency($value);
 }

 return $options;
 }
}

Our final method is the private _getShippingMultiOptions() method. This is used
internally by the cartTable() method to populate the shipping select element's
options. This method gets the shipping options from the Shipping Model and creates
an array suitable for the multiOptions option.

Cart View scripts
Now that we have all the tools created that we will need to build our cart, we can
start creating the user interface.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[237]

Cart view.phtml
The view.phtml is the View that is rendered by the viewAction of the
CartController. This View includes a title and renders the cartTable form.

application/modules/storefront/views/scripts/cart/view.phtml

<h3>shopping cart</h3>

<?=$this->Cart()->cartTable();?>

Cart _cart.phtml
The ViewScript decorator attached to the table form will render the _cart.phtml
View. When it renders, the ViewScript decorator will create a view partial and pass
in the form as the element property for this View script.

application/modules/storefront/views/scripts/cart/_cart.phtml

<div style="padding: 8px;">
 <table style="width: 100%;">
 <tbody>
 <?
 $i = 0;
 foreach($this->element->getModel() as $item):
 ?>
 <tr <? if($i % 2){ echo 'class="odd"';};?>>
 <td><?=$this->Escape($item->name); ?></td>
 <td><?=$this->element->qtys->getElement
 ($item->productId); ?></td>
 <td class="rt"><?=$this->Cart()->formatAmount
 ($item->getLineCost()); ?></td>
 </tr>
 <?
 ++$i;
 endforeach;
 ?>
 <tr>
 <td colspan="2" class="rt">SubTotal:</td>
 <td class="rt colRight"><?=$this->Cart()
 ->formatAmount($this->element->getModel()
 ->getSubTotal()); ?></td>
 </tr>
 <tr>
 <td colspan="2" class="rt">Shipping: <?=$this->element
 ->getElement('shipping');?></td>
 <td class="rt colRight"><?=$this->Cart()
 ->formatAmount($this->element->getModel()
 ->getShippingCost()); ?></td>
 </tr>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[238]

 <tr>
 <td colspan="2" class="rt">Total:</td>
 <td class="rt"><?=$this->Cart()->formatAmount($this
 ->element->getModel()->getTotal()); ?></td>
 </tr>
 </tbody>
 </table>
 <?=$this->element->getElement('update-cart'); ?>

</div>

The HTML produced by this script will look similar to the following screenshot:

The main aspect here is the line items. We need to iterate over the cart and display
each product line item.

<?
$i = 0;
foreach($this->element->getModel() as $item):
?>
 <tr <? if($i % 2){ echo 'class="odd"';};?>>
 <td><?=$this->Escape($item->name); ?></td>
 <td>
<?=$this->element->qtys->getElement($item->productId); ?>
 </td>
 <td class="rt">
<?=$this->Cart()->formatAmount($item->getLineCost()); ?>
 </td>
 </tr>
<?
++$i;
endforeach;
?>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[239]

Here, we get the Cart Model from the form using our new getModel() method that
we created earlier in the SF_Form_Abstract and iterate over it. As we iterate over
the Cart Model, we display all the products and line costs. We also get the quantity
form elements. To retrieve the correct quantity form element for each product, we
access the qtys subform and use the getElement() method. We pass in the items
productId as we named our quantity form elements using the productId earlier.

All of the other form data is rendered in a similar way. We either get data from the
Cart Model, or get elements from the form itself. By using the ViewScript decorator,
we can see that it is much easier to mix form and non-form elements.

Layout main.phtml
application/layouts/scripts/main.phtml

<div class="left categorylist">
 <?= $this->layout()->categoryMain; ?>
 <? if (0 < count($this->subCategories)):?>
 <div class="sub-nav">
 <h3>in this category</h3>

 <? foreach ($this->subCategories as $category): ?>
 <a href="<?=$this->url(array('categoryIdent' =>
 $category->ident), 'catalog_category', true
);?>"><?=$category->name; ?>
 <? endforeach; ?>

 </div>
 <? endif; ?>
 <div>
 <h3>in your cart</h3>
 <?= $this->Cart()->getSummary(); ?>
 </div>
</div>

We need to display the cart summary to the users so that they can see a brief
overview of the items in their cart. To do this, we will use the Cart View Helper
and the getSummary() method that looks similar to the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Shopping Cart

[240]

Catalog index.phtml
application/modules/storefront/view/scripts/catalog/index.phtml

<p><?=$this->productPrice($product); ?></p>
<?=$this->Cart()->addForm($product); ?>

When displaying a list of products, we want the user to be able to add the product to
their cart at that point. To do this, we render the cart add form under the price. This
will make our catalog listing look like the one shown below:

Catalog view.phtml
application/modules/storefront/view/scripts/catalog/view.phtml

<p><?=$this->productPrice($this->product); ?></p>
<?=$this->Cart()->addForm($this->product); ?>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 7

[241]

Just like the index.phtml, we need to render the cart add form after the product
price. This will make our details page look like this:

Summary
In this chapter, we have looked at creating Models that do not use a database,
using Zend_Form to create highly customized form layouts, injecting the Model
into the Form instances, and adding dynamic data to our forms. In the next chapter,
we will look at authorization and authentication by adding the security layer to
the storefront.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and
Authorization

We are now reaching the end of the Storefront development. In this chapter, we will
focus on how we can control access to parts of the application and how users can log
in to use the services provided by the Storefront.

We will cover the following topics in this chapter:

Authentication and Authorization
Using Zend_Auth and Zend_Acl
Integrating the ACL into our Models

Authentication versus Authorization
Before we go any further, we need to first look at what exactly authentication and
authorization is, as they are often misunderstood.

Authorization is the process of allowing someone or something to actually do
something. For example, if I go into a data centre, then the security guards control
my authorization to the data centre and would, for instance, not allow me access to
the server room if I was just a visitor but would if I worked there as a system admin.

Authentication is the process of confirming someone or something's identity. For
example, when I go to into the data centre the security guards will ask me for my
identity, which most probably would be a card with my name and photo on. They
use this to authenticate my identity.

These concepts are very important so make sure you understand the difference. This
is how I remember them:

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[244]

Authorization: Can they do this?
Authentication: Are they who they say they are?

Authentication with Zend_Auth
To provide our authentication layer, we are going to use Zend_Auth. It provides an
easy way to authenticate a request, obtain a result, and then store the identity of that
authentication request.

Zend_Auth
Zend_Auth has three main areas—authentication adapters, authentication results,
and identity persistence.

Authentication adapters
Authentication adapters work in a similar way to database adapters. We configure
the adapter and then pass it to the Zend_Auth instance, which then uses it to
authenticate the request.

The following concrete adapters are provided by default:

HTTP Digest authentication
HTTP Basic authentication
Database Table authentication
LDAP authentication
OpenID authentication
InfoCard authentication

All of these adapters implement the Zend_Auth_Adapter_Interface, meaning we
can create our own adapters by implementing this interface.

Authentication results
All authentication adapters return a Zend_Auth_Result instance, which stores
the result of the authentication request. The stored data includes whether the
authentication request was successful, an identity if the request was successful,
and any failure messages, if unsuccessful.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[245]

Identity persistence
The default persistence used is the PHP session. It uses Zend_Session_Namespace
to store the identity information in the Zend_Auth namespace. There is one
other type of storage available named NonPersistent, which is used for HTTP
authentication. We can also create our own storage by implementing the
Zend_Auth_Storage_Interface.

Authentication Service
We are going to create an Authentication Service that will handle authentication
requests. We are using a service to keep the authentication logic away from our
User Model. Let's create this class now:

application/modules/storefront/services/Authentication.php

class Storefront_Service_Authentication
{
 protected $_authAdapter;
 protected $_userModel;
 protected $_auth;

 public function __construct(Storefront_Model_User
 $userModel = null)
 {
 $this->_userModel = null === $userModel ?
 new Storefront_Model_User() : $userModel;
 }

 public function authenticate($credentials)
 {
 $adapter = $this->getAuthAdapter($credentials);
 $auth = $this->getAuth();
 $result = $auth->authenticate($adapter);

 if (!$result->isValid()) {
 return false;
 }

 $user = $this->_userModel
 ->getUserByEmail($credentials['email']);

 $auth->getStorage()->write($user);

 return true;
 }

 public function getAuth()
 {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[246]

 if (null === $this->_auth) {
 $this->_auth = Zend_Auth::getInstance();
 }
 return $this->_auth;
 }

 public function getIdentity()
 {
 $auth = $this->getAuth();
 if ($auth->hasIdentity()) {
 return $auth->getIdentity();
 }
 return false;
 }

 public function clear()
 {
 $this->getAuth()->clearIdentity();
 }

 public function setAuthAdapter(Zend_Auth_Adapter_Interface
 $adapter)
 {
 $this->_authAdapter = $adapter;
 }

 public function getAuthAdapter($values)
 {
 if (null === $this->_authAdapter) {
 $authAdapter = new Zend_Auth_Adapter_DbTable(
 Zend_Db_Table_Abstract::getDefaultAdapter(),
 'user',
 'email',
 'passwd'
);
 $this->setAuthAdapter($authAdapter);
 $this->_authAdapter
 ->setIdentity($values['email']);
 $this->_authAdapter
 ->setCredential($values['passwd']);
 $this->_authAdapter
 ->setCredentialTreatment(
 'SHA1(CONCAT(?,salt))'
);
 }
 return $this->_authAdapter;
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[247]

The Authentication Service contains the following methods:

__constuct: Creates or sets the User Model instance
authenticate: Processes the authentication request
getAuth: Returns the Zend_Auth instance
getIdentity: Returns the stored identity
clear: Clears the identity (log out)
setAuthAdapter: Sets the authentication adapter to use
getAuthAdapter: Returns the authentication adapter

The Service is really separated into three areas. They are getting the Zend_Auth
instance, configuring the adapter, and authenticating the request using Zend_Auth
and the Adapter.

To get the Zend_Auth instance, we have the getAuth() method. This method
retrieves the singleton Zend_Auth instance and sets it on the $_auth property. It is
important to remember that Zend_Auth is a singleton class, meaning that there can
only ever be one instance of it.

To configure the adapter, we have the getAuthAdapter() method. By default,
we are going to use the Zend_Auth_Adapter_DbTable adapter to authenticate the
request. However, we can also override this by setting another adapter using the
setAuthAdapter() method. This is useful for adding authenticate strategies and
testing. The configuration of the DbTable adapter is important here, so let's have a
look at that code:

$authAdapter = new Zend_Auth_Adapter_DbTable(
 Zend_Db_Table_Abstract::getDefaultAdapter(),
 'user',
 'email',
 'passwd',
 'SHA1(CONCAT(?,salt))'
);
$this->setAuthAdapter($authAdapter);
$this->_authAdapter->setIdentity($values['email']);
$this->_authAdapter->setCredential($values['passwd']);

The Zend_Auth_Adapter_DbTable constructor accepts five parameters. They
are database adapter, database table, table name, identity column, and credential
treatment. For our adapter, we supply the default database adapter for our table
classes using the getDefaultAdapter() method, the user table, the email column,
the passwd column, and the encryption and salting SQL for the password. Once we
have our configured adapter, we set the identity and credential properties. These will
then be used during authentication.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[248]

To authenticate the request, we use the authenticate method.

$adapter = $this->getAuthAdapter($credentials);
$auth = $this->getAuth();
$result = $auth->authenticate($adapter);

if (!$result->isValid()) {
 return false;
}

$user = $this->_userModel
 ->getUserByEmail($credentials['email']);

$auth->getStorage()->write($user);

return true;

Here we first get the configured adapter, get the Zend_Auth instance, and then fetch
the result using Zend_Auth's authenticate method, while passing in the configured
adapter. We then check that the authentication request was successful using the
isValid() method. At this point, we can also choose to handle different kinds of
failures using the getCode() method. This will return one of the following constants:

Zend_Auth_Result::SUCCESS
Zend_Auth_Result::FAILURE
Zend_Auth_Result::FAILURE_IDENTITY_NOT_FOUND
Zend_Auth_Result::FAILURE_IDENTITY_AMBIGUOUS
Zend_Auth_Result::FAILURE_CREDENTIAL_INVALID
Zend_Auth_Result::FAILURE_UNCATEGORIZED

By using these, we could switch and handle each error in a different way. However,
for our purposes, this is not necessary.

If the authentication request was successful, we then retrieve a Storefront_
Resource_User_Item instance from the User Model and then write this object to
Zend_Auth's persistence layer by getting the storage instance using getStorage()
and writing to it using write(). This will then store the user in the session so that we
can retrieve the user information throughout the session.

Our Authentication Service is now complete, and we can start using it to create a
login system for the Storefront.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[249]

Customer Controller
To use our new Authentication Service, we need to add the following to the
Customer Controller:

application/modules/storefront/controllers/CustomerController.php

public function init()
{
 // get the default model
 $this->_model = new Storefront_Model_User();
 $this->_authService =
 new Storefront_Service_Authentication();

 // add forms
 $this->view->registerForm = $this->getRegistrationForm();
 $this->view->loginForm = $this->getLoginForm();
 $this->view->userForm = $this->getUserForm();
}

public function loginAction()
{}

public function authenticateAction()
{
 $request = $this->getRequest();

 if (!$request->isPost()) {
 return $this->_helper->redirector('login');
 }

 // Validate
 $form = $this->_forms['login'];
 if (!$form->isValid($request->getPost())) {
 return $this->render('login');
 }

 if (false === $this->_authService->authenticate
 ($form->getValues())) {
 $form->setDescription('Login failed, please try again.');
 return $this->render('login');
 }

 return $this->_helper->redirector('index');
}

public function logoutAction()
{
 $this->_authService->clear();
 return $this->_helper->redirector('index');
}

public function getLoginForm()
{
 $urlHelper = $this->_helper->getHelper('url');

 $this->_forms['login'] = $this->_model->getForm('userLogin');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[250]

 $this->_forms['login']->setAction($urlHelper->url(array(
 'controller' => 'customer',
 'action' => 'authenticate',
),
 'default'
));
 $this->_forms['login']->setMethod('post');

 return $this->_forms['login'];
}

We have added three new methods to the Customer Controller—loginAction,
authenticateAction, and getLoginForm. We have also updated the init()
method to instantiate the Authentication Service and add the login form to the view.

The loginAction is used to display the login form to the user and simply renders
the login.phtml view.

The authenticateAction validates the login form, authenticates the request,
and then redirects the user to the indexAction if the request is successfully
authenticated. If the authentication request fails, we set the description of the
form to reflect this and then re-render the login form.

The getLoginForm method simply gets the login form from the User Model. We
should already be familiar with the way this works.

Authentication View Helper
There are many times when our Views need to use information about the user to
decide whether to display something or not. To help with this, we will create the
AuthInfo View Helper.

application/modules/storefront/views/helpers/AuthInfo.php

class Zend_View_Helper_AuthInfo extends Zend_View_Helper_Abstract
{
 protected $_authService;

 public function authInfo ($info = null)
 {
 if (null === $this->_authService) {
 $this->_authService = new
 Storefront_Service_Authentication();
 }

 if (null === $info) {
 return $this;
 }

 if (false === $this->isLoggedIn()) {
 return null;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[251]

 }

 return $this->_authService->getIdentity()->$info;
 }

 public function isLoggedIn()
 {
 return $this->_authService->getAuth()->hasIdentity();
 }
}

The AuthInfo Helper is pretty simple and wraps the functionality of the
Authentication Service for us. Remember though just like Models, our View
Helpers should only have read-only access to the Service.

We can use the AuthInfo Helper in two ways:

To get some user information, we use:
$this->authInfo('role');

$this->authInfo('firstname');

This would get the role and firstname of the currently authenticated user
or null if they are not logged in.
To check if the user is logged in or not, we use:
$this->authInfo()->isLoggedIn();

This will return true if they are logged in or false if they are not.

Other Authentication Service elements
With the main Authentication components created, all that is left to do is create the
forms and update the Views. As we have covered this a few times already, we will
not include the code listing here. Instead, copy the following updated or new files
from the example files:

application/layouts/scripts/_topnav.phtml: updates the menu to
exclude certain items to non-logged in users.
application/modules/storefront/forms/User/Login.php: new
login form.
application/modules/storefront/views/scripts/customer/login.
phtml: new view to display the login form.

Of course, this would be a good chance for you to try and create these elements
yourself. Once these are created, we should be able to log in by registering and then
using the newly created user to authenticate with.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[252]

Authorization with Zend_Acl
We now have a way to check if a user is who he/she says he/she is. Next we need to
stop certain users from accessing certain parts of the application. To do this, we are
going to use the Zend_Acl component.

Zend_Acl introduction
ACL (Access Control List) lets us create a list that contains all the rules for accessing
our system. In Zend_Acl, this list works like a tree enabling us to inherit from rule to
rule, building up a fine-grained access control system.

There are two main concepts at work in Zend_Acl—Resources and Roles.
A Resource is something that needs to be accessed and a Role is the thing that is
trying to access the Resource. To have access to a resource, you need to have the
correct Role.

To start us off, let's first look at a basic example. In this example, we are going to
use the scenario of a data centre. In the data centre, we need to control access to the
server room. Only people with the correct permissions will be able to access the
server room.

To start, we need to create some Roles and Resources.

$visitor = new Zend_Acl_Role('Visitor');
$admin = new Zend_Acl_Role('Admin');

$serverRoom = new Zend_Acl_Resource('ServerRoom');

Here we have created two Roles—Visitor and Admin and one Resource—ServerRoom.
Next, we need to create the Access Control List.

$acl = new Zend_Acl();
$acl->addRole($visitor);
$acl->addRole($admin, $visitor);
$acl->add($serverRoom);

Here we instantiate a new Zend_Acl instance and add the two Roles and one new
access rule. When we add the Roles, we make the Admin Role inherit from the
Visitor Role. This means that Admin inherits all the access rules of the Visitor. We
also add one new Rule containing the ServerRoom resource.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[253]

At this point, access to the server room is denied for both Visitors and Admins. We
can change this by adding allow or deny rules:

Allow all to all resources: $acl->allow();
Deny all to all resources: $acl->deny();
Allow Admin and Deny Visitor to all resources: $acl->allow($admin);
Allow Admin and Deny Visitor to ServerRoom resource: $acl-
>allow($admin, $serverRoom);

When adding rules, we can also set permissions. These can be used to deny/allow
access to parts of a Resource. For example, we may allow visitors to view the server
room but not access the cabinets. To do this, we can add extra permission options to
our rules.

Allow Visitor and Admin to view the ServerRoom, Deny Visitor cabinet access:

$acl->allow(visitor, $serverRoom, array('view'));
$acl->deny($visitor, $serverRoom, array('cabinet'));

Here we simply add the new permissions as an array containing the strings of the
permissions we want to add to the ServerRoom resource.

Next we need to query the ACL. This is done through the isAllowed() method.

$acl->isAllowed($admin, $serverRoom, 'view');
// returns true

$acl->isAllowed($visitor, $serverRoom, 'view');
// returns true

$acl->isAllowed($visitor, $serverRoom, 'cabinet');
// returns false

As we can see, Zend_Acl provides us with an easy, lightweight way of controlling
access to our systems resources. Next we will look at the ways in which we can use
the ACL component in our MVC application.

ACL in MVC
When looking to implement ACL in MVC, we need to first think about how and where
we implement the ACL in the MVC layers. The ACL by nature is centralized, meaning
that all rules, permissions, and so on are kept in a central place from which we query
them. However, do we really want this? What about when we introduce more than
one module, do all modules use the same ACL? Also we need to think about where
access control happens—is it in the Controller layer or the Model/Domain layer?

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[254]

Using a centralized global ACL
A common way to implement the ACL is to use a centralized ACL with access
controlled at the application level or outside the domain layer. To do this, we first
create a centralized ACL. Typically, this would be done during the bootstrap process
and the full ACL would be created including all rules, resources, and roles. This can
then be placed within the Registry or passed as an invoke argument to the Front
Controller. We would then intercept each request using a Front Controller plugin
(preDispatch). This would check whether the request was authorized or not using
the ACL. If the request was not valid, we would then redirect the request to an access
denied controller/action.

This approach would base its rules on the controller/action being requested, so a
rule using this may look something like:

$acl->allow('Customer', 'user', 'edit');

Here we would allow access for a Customer Role to the User Resource and the Edit
permission. This would map to the user Controller, and the edit action or user/edit.

The advantages of using centralized global ACL are as follows:

Centralized place to access and manage ACL rules, resources, and roles
Maps nicely to the MVC controller/action architecture

The disadvantages are as follows:

Centralized ACL could become large and hard to manage
No means to handle modules
We would need to re-implement access controls in order to use our Domain
in a web service, as they are based on action/controller

Using module specific ACL's
The next logical step is to split the ACL so that we have one ACL per module. To do
this, we would still create our ACL during bootstrap but this time we would create a
separate ACL for each module, and then we would use an Action Helper instead of
Front Controller plugin to intercept the request (preDispatch).

Advantages:

Fixes our module handling problem with the previous approach
Keeps things modular and smaller

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[255]

Disadvantages:

We still have the problem of having to re-implement access control if we use
our Domain away from the controller/action context.

ACL in the Domain layer
To deal with our last concern about what if we need to use the Domain in another
context outside the controller/action architecture, we have the option to move all
the Access Control into the Domain itself. To do this, we would have one ACL per
module but would push the management of this into the Model. The Models would
then be responsible for handling their own access rules. This in effect will give us a
de-centralized ACL, as the Models will add all rules to the ACL.

Advantages:

We can use the Model in different contexts without the need to re-implement
the access control rules.
We can unit test the access control
The rules will be based on Model methods and not depend on the
application layer

Disadvantages:

Adds complexity to the Domain/Models
Being de-centralized, it could be harder to manage

For the Storefront, we have opted to use the Model based ACL approach. While it
adds more complexity and implementation can be a little confusing, the advantages
of being able to unit test and use the Models outside the application layer is a big
advantage. It also gives us a chance to demonstrate some of the more advanced
features of the ACL component.

Model based ACL
The first thing to look at is some of the main components that we need to implement
a Model based ACL. The main elements here are as follows:

The ACL: This stores the roles we want in the system and any global rules.
Resource(s): This will be our Model. The Model will become the Resource we
wish to access.
Roles: These are the actual roles we wish to use.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[256]

As we can see there is nothing new here, we are just going to be implementing them
in a different way than in our earlier examples. To do this, we are going to need to
create some new classes and refactor some old ones. We will start though by looking
at the main ACL class and Roles.

The Storefront ACL
We will need a Zend_Acl instance for the storefront module. We will use this to store
all our roles and rules.

application/modules/storefront/models/Acl/Storefront.php

class Storefront_Model_Acl_Storefront extends Zend_Acl implements
SF_Acl_Interface
{
 public function __construct()
 {
 $this->addRole(new Storefront_Model_Acl_Role_Guest)
 ->addRole(new Storefront_Model_Acl_Role_Customer, 'Guest')
 ->addRole(new Storefront_Model_Acl_Role_Admin, 'Customer');

 $this->deny();
 }
}

The Storefront_Model_Acl_Storefront class will store all the rules that the
storefront module's Models add to it. This class subclasses the Zend_Acl class and
using the constructor adds the available roles to the ACL tree. We add three roles to
the ACL—Guest, Customer, and Admin. The Customer role inherits from the Guest
and the Admin role inherits from the Customer. We then deny access to all resources
using the deny() method with no parameters. This effectively creates a white-list,
meaning that everything is denied unless we explicitly allow it.

We can see that the Storefront_Model_Acl_Storefront class is very simple and
is only responsible for setting up the roles. The Models will define the resources and
permissions later.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[257]

The Storefront roles
Previously, we added the three storefront user roles to the ACL. We will need to
create the Role classes for each of them. To create a Role class, we need to implement
the Zend_Acl_Role_Interface interface. This interface defines one method
(getRoleId()), which should return the role identity string.

application/modules/storefront/models/Acl/Role/Admin.php

class Storefront_Model_Acl_Role_Admin implements
Zend_Acl_Role_Interface
{
 public function getRoleId()
 {
 return 'Admin';
 }
}

application/modules/storefront/models/Acl/Role/Customer.php

class Storefront_Model_Acl_Role_Customer implements
Zend_Acl_Role_Interface
{
 public function getRoleId()
 {
 return 'Customer';
 }
}

application/modules/storefront/models/Acl/Role/Guest.php

class Storefront_Model_Acl_Role_Guest implements
Zend_Acl_Role_Interface
{
 public function getRoleId()
 {
 return 'Guest';
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[258]

Here we have created the three roles available to the storefront (Admin, Customer,
and Guest). Each one simply implements the Zend_Acl_Role_Interface and
returns a string that uniquely identifies it. However, there is one more
class that needs to implement the Zend_Acl_Role_Interface, which is the
Storefront_Resource_User_Item class.

application/modules/storefront/models/resources/User/Item.php

class Storefront_Resource_User_Item extends
SF_Model_Resource_Db_Table_Row_Abstract implements
Storefront_Resource_User_Item_Interface, Zend_Acl_Role_Interface
{
 /*... */

 public function getRoleId()
 {
 if (null === $this->getRow()->role) {
 return 'Guest';
 }
 return $this->getRow()->role;
 }
}

Here we have updated our user model resource item to implement the
Zend_Acl_Role_Interface and added the getRoleId() method. This method
either returns the user's current role column or Guest if the role is not set. We do
this because we are storing the user item in the Zend_Auth identity and will be
passing this to the Models for them to use for authorization checks. We can then
be sure that the Models are using a valid identity.

The Storefront resources
As we said before in this implementation, the Model will be the Resource.
The way we achieve this is very simple. All we need to do is implement the
Zend_Acl_Resource_Interface, and this will then turn our Models (or any
class) into valid ACL Resources. Here is a basic example:

class MyClass implements Zend_Acl_Resource_Interface
{
 public function getResourceId()
 {
 return 'MyResource';
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[259]

Once our class has implemented the resource interface, we can use it with the ACL:

$resource = new MyClass();
$acl = new Zend_Acl();
$acl->add($resource);

We are half way to having the ACL integrated into our Models. Next, we will create
some abstract classes and interfaces that our Models can use to fully implement all
the required functionality.

The new base model
To fully use the ACL, our Models need access to the ACL, the resource, and the
identity. In our implementation these are Storefront_Model_Acl_Storefront, the
Model ($this), and Storefront_Resource_User_Item (stored in Zend_Auth). To
make these available to the Model, we are going to need some extra functionality
added to each of our Models. To encapsulate this, we are going to create a new
abstract model class and some new interfaces.

library/SF/Model/Acl/Interface.php

interface SF_Model_Acl_Interface
{
 public function setIdentity($identity);
 public function getIdentity();
 public function setAcl(SF_Acl_Interface $acl);
 public function getAcl();
 public function checkAcl($action);
}

Here we have defined a new interface for our Models. This also introduces the
SF_Model_Acl namespace. As not all of our Models will use the ACL, we will make
it optional whether the Model uses the SF_Model or SF_Modle_Acl classes. The
interface defines five methods. These will be used to set and get the identity and
ACL and also to query the ACL.

library/SF/Model/Acl/Abstract.php

abstract class SF_Model_Acl_Abstract extends SF_Model_Abstract
implements SF_Model_Acl_Interface, Zend_Acl_Resource_Interface
{
 protected $_acl;

 protected $_identity;

 public function setIdentity($identity)
 {
 if (is_array($identity)) {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[260]

 if (!isset($identity['role'])) {
 $identity['role'] = 'Guest';
 }
 $identity = new Zend_Acl_Role($identity['role']);
 } elseif (is_scalar($identity) && !is_bool($identity)) {
 $identity = new Zend_Acl_Role($identity);
 } elseif (null === $identity) {
 $identity = new Zend_Acl_Role('Guest');
 } elseif (!$identity instanceof Zend_Acl_Role_Interface) {
 throw new SF_Model_Exception('Invalid identity
 provided');
 }
 $this->_identity = $identity;
 return $this;
 }

 public function getIdentity()
 {
 if (null === $this->_identity) {
 $auth = Zend_Auth::getInstance();
 if (!$auth->hasIdentity()) {
 return 'Guest';
 }
 $this->setIdentity($auth->getIdentity());
 }
 return $this->_identity;
 }

 public function checkAcl($action)
 {
 return $this->getAcl()->isAllowed(
 $this->getIdentity(),
 $this,
 $action
);
 }
}

The SF_Model_Acl_Abstract class subclasses the SF_Model_Abstract and
implements the SF_Model_Acl_Interface and Zend_Acl_Resource_Interface
interfaces. All Models that need ACL support can now subclass the SF_Model_Acl_
Abstract.

The setIdentity() method will accept either null, string, array, or a
Zend_Acl_Role_Interface instance. The identity should contain the role to
be used when checking the ACL. If no role is set, then we default to the Guest role.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[261]

The getIdentity() method is designed to lazy load the identity from Zend_Auth.
Therefore, we first check if the $_identity property is null. If it is, then we retrieve
the identity from Zend_Auth and set it on the Model using setIdentity(). The
identity returned by Zend_Auth will be an instance of Storefront_Resource_User_
Item. This implements the Zend_Acl_Role_Interface and as a result it is fine to
set it on the Model. During normal use we would always rely on the lazy loading
here. The only time we would not is during testing when we need to set the identity
ourselves and not from the session.

The checkAcl() method is used to query the ACL. This method simply returns the
result of the isAllowed() method of the Zend_Acl class. We can see that we pass
the identity, the resource ($this/$the Model), and the action to isAllowed(). The
action will be defined by us when we configure the ACL inside the concrete Models
and simply represent the permission or the action that is trying to be undergone.

You will notice that we still have not implemented some of the methods defined
in the SF_Model_Acl_Interface and Zend_Acl_Resource_Interface interfaces.
These will need to be implemented inside the concrete Models as they contain Model
specific settings.

Securing the User Model
Now that we have the base class created, we can start securing our application. To
do this, we will edit the User Model. The first step is to have the Model subclass the
SF_Model_Acl_Abstract class.

application/modules/storefront/models/User.php

class Storefront_Model_User extends SF_Model_Acl_Abstract
{

Once we have the User Model subclassing the SF_Model_Acl_Abstract, we then
must implement the getAcl(), setAcl(), and getResourceId() methods.

application/modules/storefront/models/User.php

public function getResourceId()
{
 return 'User';
}

public function setAcl(SF_Acl_Interface $acl)
{
 if (!$acl->has($this->getResourceId())) {
 $acl->add($this)
 ->allow('Guest', $this, array('register'))
 ->allow('Customer', $this, array('saveUser'))

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[262]

 ->allow('Admin', $this);
 }
 $this->_acl = $acl;
 return $this;
}

public function getAcl()
{
 if (null === $this->_acl) {
 $this->setAcl(new Storefront_Model_Acl_Storefront());
 }
 return $this->_acl;
}

First we implement the getResourceId() method, which is defined by the
Zend_Acl_Resource_Interface interface and simply returns the string
identifying the resource (the Model) as User.

Next, we implement the setAcl() method, which is defined by the SF_Model_Acl_
Interface interface. This method is responsible for configuring our ACL by adding
the Resources and Rules. We first check to see if the ACL has the Resource registered
to it. If not, we then add the Resource ($this) and configure the rules for the User
Model. The rules here are as follows:

Guest can access register
Customer can access register and saveUser
Admin can access everything (we pass null as the action)

Once the ACL is configured, we set the ACL on the $_acl property and return $this
to allow method chaining. Note that the permission names we use do not have to
match method names.

Our final method is getAcl(). This again is defined by the SF_Model_Acl_
Interface interface. This method checks if the $_acl property has been set and then
if not sets a new Storefront_Model_Acl_Storefront instance as the ACL to be
used. We do this to help with testing later on, as it allows us to not use the default
ACL and inject a mock one instead.

Now that we have implemented all of our required methods, we can start querying
the ACL to deny or allow access to parts of the Model. Edit the User Model and add
the following to the methods as shown.
application/modules/storefront/models/User.php

public function saveUser($post, $validator = null)
{
 if (!$this->checkAcl('saveUser')) {
 throw new SF_Acl_Exception("Insufficient rights");

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[263]

 }
/*...*/

public function registerUser($post)
{
 if (!$this->checkAcl('register')) {
 throw new SF_Acl_Exception("Insufficient rights");
 }
/*...*/

To query the ACL, we simply need to call the checkAcl() method. This will
then query the ACL for us and tell us if the current user has the correct access
permissions. If the User does not have the correct permissions, then we throw
an SF_Acl_Exception. You will need to copy this exception class from the
example files.

We now have a fully working ACL that is integrated into the Domain layer of
our MVC application and we are not depending on the Controller layer for this
functionality, meaning we can use the Models outside the MVC context. It is
important to note that we could also implement the ACL in this way for other
entities within the application, such as Services. All we need to do is create the
base classes for that namespace or create a more generic set of ACL base classes.

Non-Model ACL
With this implementation, we also have the ability to use the ACL in a more common
way. We can still add other Resources to the ACL that are not Models, meaning we
can control access to non-Model Resources.

For the next chapter, we will be creating the administrator functionality for the
Storefront. The way we do this there will not be an admin Model. However, we still
want to deny access to this area to anyone without the Admin Role. To deal with this
requirement, we are going to create a new Resource and add it to the ACL. To start,
create the following ACL resource class:

application/modules/storefront/models/Acl/Resources/Admin.php

class Storefront_Model_Acl_Resource_Admin implements
Zend_Acl_Resource_Interface
{
 public function getResourceId()
 {
 return 'Admin';
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[264]

Here we have simply created a new ACL Resource identified as Admin, which will
represent the administration area. Next, we need to add the following code to
the ACL:

application/modules/storefront/models/Acl/Storefront.php

class Storefront_Model_Acl_Storefront extends Zend_Acl implements
SF_Acl_Interface
{
 public function __construct()
 {
 $this->addRole(new Storefront_Model_Acl_Role_Guest)
 ->addRole(new Storefront_Model_Acl_Role_Customer,
 'Guest')
 ->addRole(new Storefront_Model_Acl_Role_Admin,
 'Customer');

 $this->deny();

 $this->add(new Storefront_Model_Acl_Resource_Admin)
 ->allow('Admin');
 }
}

Here we add the new Resource to the main ACL and allow admin access for all
permissions. We now have the ACL configured and can query it to see if a user is
allowed to access this Resource. In the next chapter, we will create an Action Helper
to help us query the ACL from within our Controllers.

It is important to note that when we use the ACL like this it obviously creates a
dependency on the application layer, so it is important that we only use it where
necessary and make sure we push whatever we can into the Models. The Admin
Resource only really exists within the Application layer and has no Model. This will
become clearer when we implement the administration area.

Unit testing with ACL
One of the advantages of integrating the ACL into our Models is that we can now
test security in our unit tests. There is a whole suite of unit tests included with the
example files. Let's have a look at the User Model tests as well as one of the tests that
makes use of the new ACL integration:

tests/unit/Model/UserTest.php

public function test_User_Can_Be_Edited_By_Customer_And_Admin()
{
 $post = array(
 'userId' => 10,

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 8

[265]

 'title' => 'Mr',
 'firstname' => 'keith',
 'lastname' => 'pope',
 'email' => 'me@me.com'
);

 // Guest
 try {
 $edit = $this->_model->saveUser($post);
 $this->fail('Guest should not be able to edit user');
 } catch (SF_Acl_Exception $e) {}

 // Customer
 try {
 $this->_model->setIdentity(array('role' => 'Customer'));
 $edit = $this->_model->saveUser($post);
 } catch (SF_Acl_Exception $e) {
 $this->fail('Customer should be able to edit user');
 }

 // Admin
 try {
 $this->_model->setIdentity(array('role' => 'Admin'));
 $edit = $this->_model->saveUser($post);
 } catch (SF_Acl_Exception $e) {
 $this->fail('Admin should be able to edit user');
 }

 $this->assertEquals(10, $edit);
}

This test is used to validate the security of the User Model without going into too
much detail on how PHPUnit works. We can have three main assertions in this test:

Guest should not be able to saveUser
Customer should be able to saveUser
Admin should be able to saveUser

When we run the Guest assertion, we use the default identity created by our Models,
which is Guest. This means that the $_model->saveUser() call should throw an
SF_Acl_Exception. If it does not, then we fail the test.

When running the Customer and Admin assertions, we inject the role we wish to use
by calling the setIdentity() method. Remember we have no Zend_Auth session, so
we manually set the identity. We then fail the test if an SF_Acl_Exception is thrown
as Customer and Admin should be allowed to saveUser.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Authentication and Authorization

[266]

As we can see, the Model-ACL implementation provides us with a flexible platform
for testing and using the Models outside the MVC setting.

Summary
We now have a fully working authentication and authorization system integrated
into the Storefront. In the first part of this chapter, we looked at authentication
(are they who they say they are?) and used Zend_Auth to create the Authentication
Service. This enabled our users to be authenticated by the Storefront and their
identity stored for later use with the authorization systems.

In the second part of this chapter, we looked at authorization (can they do this?)
and different ways of using Zend_Acl. We opted to integrate the authorization layer
into our Models so that we could use the Models outside the typical MVC context.
To implement this, we created a new base Model class for Models that need ACL
support and then secured the User Model using this new functionality.

In the next chapter, we will look at adding some basic administrator functionality to
the Storefront as well as allowing the addition of products to the catalog.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area
We have now reached the final part of the Storefront development. In this chapter,
we will focus on the creation of the functionality to administer the Storefront catalog.

We will cover the following topics in this chapter:

Ways of implementing administration areas
Adding products to the catalog
Securing the administration area

What is an administration area?
The creation of an administration area is a very common use case for a web-based
application. Typically we want to have an area where users with administrator
privileges can have access to manage the application's settings. Also we probably
want to use a different layout so that it is easier to navigate to things like users and
products. Therefore, for the Storefront, we want to create a separate area from the
main Storefront where Admin users can add, edit, and delete products and users.

Implementation options
When implementing an administration area to an application, we have two choices:
We can create a module that is totally separate from our main module(s) or we
can create a pseudo module that acts like a normal module but all functionality is
actually held within our main module(s).

If we use a separate module, we will have a separate application layer from our
main modules, meaning the administration area will have its own set of Controllers,
Views, and so on.

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[268]

Advantages of using a separate module:

For large applications, having separate controllers can help reduce the size of
the main module(s) controllers
Less Views and Controller Actions in the main module(s)

Disadvantages of using a separate module:

We have a module that could contain functionality that affects many other
modules, and this could become confusing
We have to solve cross module access problems

If we use a pseudo module, then all the administration Controllers, Views, and so on
will be within our main module(s).

Advantages of using a pseudo module:

Administration functionality is contained within the main module(s), which
can be logically easier to understand. For example, the save operations for a
module is contained within that module, not outside it.
Modules become easier to reuse in other applications.

Disadvantage of using a pseudo module:

Controllers can become large

Both of these approaches are equally valid. We just need to consider our options
carefully before we implement them. For the Storefront, we have chosen to use a
pseudo module so that all our administration functionality is contained within the
main module.

Implementing the storefront
administration area
To implement the administration area of the Storefront, we are going to need to
create our pseudo module. To do this, we are going to use a Route, Front Controller
plugin, and a Layout Script.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[269]

Admin Route
The Admin Route will be added to the Router and will match URLs that point to the
admin resources. Add the following to the Bootstrap classes _initRoutes() method,
while making sure that this route is the first route to be added to the Router.

application/bootstrap/Bootstrap.php

// Admin context route
$route = new Zend_Controller_Router_Route(
 'admin/:module/:controller/:action/*',
 array(
 'action' => 'index',
 'controller' => 'admin',
 'module' => 'storefront',
 'isAdmin' => true
)
);

$router->addRoute('admin', $route);

This route is designed to match any URL that has /admin as its first segment and
then act like the default route, for example, admin/storefront/catalog/list/.
To define the route, we instantiate a new Zend_Controller_Router_Route route,
passing in the route definition that defines:

The first segment must be the string admin
The second segment will be used to define the module to use
The third segment will be used to define the controller to use
The fourth segment will be used to define the action to use
The fifth segment adds any user parameters from the URL

We also have the following defaults for this route:

The default module is storefront
The default controller is admin
The default action is index
isAdmin is set to true

The isAdmin variable we set here will be set as a Request parameter if the route is
matched. We will use this later when testing whether we should display the Admin
layout instead of the default one.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[270]

Admin context Front Controller plugin
Now that we have our Admin Route created, we are going to create a Front
Controller plugin that will switch the Layout Script for us if the current request is
for an admin resource. By doing this, we can have a totally different layout for our
administrator users.

Create the following class in the SF library:

library/SF/Plugin/AdminContext.php

class SF_Plugin_AdminContext extends Zend_Controller_Plugin_Abstract
{
 public function preDispatch(Zend_Controller_Request_Abstract
 $request)
 {
 if($request->getParam('isAdmin')) {
 $layout = Zend_Layout::getMvcInstance();
 $layout->setLayout('admin');
 }
 }
}

The AdminContext plugin hooks into the preDispatch event of the Front Controller
and will change the layout script for us. Inside the preDispatch() method, we
simply check whether the isAdmin Request parameter is true. If it is, then we
retrieve the Zend_Layout instance using the static getMvcInstance() method.
Once we have the Zend_Layout instance, we set the layout script to admin using
the setLayout() method. This will then make Zend_Layout load the admin.phtml
instead of the main.phtml layout script when the Router has matched our
Admin Route.

To enable our Front Controller plugin, we will need to update the store.ini config
file, while adding the following to the bootstrap section of the store.ini:

resources.frontcontroller.plugins.admin = "SF_Plugin_AdminContext"

This will then instantiate our new plugin for us and register it with the
Front Controller.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[271]

Admin layout
For our new AdminContext plugin to work, we will need to create the new layout
script for the administration area. Create the following view scripts:

application/layouts/scripts/admin.phtml

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
 <?= $this->headTitle(); ?>

 <?= $this->headMeta(); ?>

 <?= $this->headStyle(); ?>

 <?= $this->headLink(); ?>

 <?= $this->headScript(); ?>
</head>
<body>
 <h1 class="noDisplay">
 <?= $this->placeholder('Zend_View_Helper_HeadTitle');?>
 </h1>

 <div id="headwrap" class="clearfix">

 <div class="right">
 <?= $this->render('_adminnav.phtml') ?>
 </div>

 <div id="logo" class="left">
 <img src="/images/layout/logo.png" alt="Shop till you
 drop..." />
 </div>

 </div>

 <div id="contentWrap" class="clearfix">
 <?= $this->layout()->content ?>
 </div>

 <div id="footer" class="clearfix">
 <div class="left">
 <a href="/rss" title="products
 feed">RSS 2.0
 </div>
 <div class="right">
 © 2008 Keith Pope
 </div>
 </div>
</body>
</html>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[272]

The admin layout is very similar to the main layout. However, we are rendering a
different main navigation menu and do not include things like the shopping cart.
For the Storefront, we are using the same design as the frontend. Remember that this
does not have to be the case; we could use a totally different design if we wanted to
and only use the same design here for simplicity.

application/layouts/scripts/_adminnav.phtml

<h2 class="noDisplay">Main Navigation</h2>
<div class="main-nav">
 <ul class="clearfix">
 <a href="<?=$this->url(array('controller' => 'customer',
 'action' => 'list')); ?>" title="Customers">Customers

 <a href="<?=$this->url(array('controller' => 'catalog',
 'action' => 'list')); ?>" title="Catalog">Catalog

 Store

</div>

The _adminnav.phtml is rendered by the admin.phtml script and simply displays
the available admin sections.

We also need to update the main layout script and add in the admin link. In order to
do this, edit the main.phtml file and add the following to the admin anchor tag:

application/layouts/scripts/main.phtml

<a href="<?= $this->url(array(
 'controller' => 'admin',
 'action' => 'index',
 'module' => 'storefront'
),
 'admin', true
);
 ?>"
 title="administration area">Admin

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[273]

Admin controller
The final part to implementing our administration area is to create the Admin
Controller. We had defined this in our Admin Route so we need to create this for
everything to work. This controller will be called when a user visits /admin.

application/modules/storefront/controllers/AdminController.php

class Storefront_AdminController extends Zend_Controller_Action
{
 public function indexAction()
 {}
}

The Admin Controller contains one action index, and this will render the
admin index View. You will need to create this View script or copy it from
the Chapter 9 | part 1 example files.

Our administration area should now be accessible. If we build the application and
visit /admin, we should now get a different layout looking something like the one
shown in the following screenshot:

Catalog management
Now that we have our administration area, let's add some administrative
functionality to the Storefront. For this, we will add the ability to add products
to the catalog. To do this, we will need to install the second part of the example
files. This will be our starting point for the rest of this chapter.

In the Chapter 9 example files, we have three directories, Part1, Part2, and Final.
To follow the next set of examples you will need to overwrite all the previous code
we have created with the code contained within the Part2 directory. We are doing
this so that we don't repeat too much code, though you may find it useful to look
through the code once we have finished the chapter.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[274]

The updated files provide the following functionality:

Browsing the catalog
Adding Categories
Managing Users
Adding Images to products

This leaves us with the task of implementing the add functionality for products.
If we now run a build, then we should be able to log in and browse the catalog
products in the admin area, which should look as shown in the following screenshot:

The default login is me@me.com with a password of 123456.

Adding products
Now that we have imported the updated files, we can start implementing the
product creation functionality. To do this, we will need to create a product form,
update the Catalog Model, update the Catalog Controller, and create the related
View scripts.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[275]

Product add form
Just like when we were implementing the frontend customer functionality, we will
use the product form to filter and validate data for our Catalog Model. Create the
following form class:

application/modules/storefront/forms/Catalog/Product/Add.php

class Storefront_Form_Catalog_Product_Add extends SF_Form_Abstract
{
 public function init()
 {
 // add path to custom validators & filters
 $this->addElementPrefixPath(
 'Storefront_Validate',
 APPLICATION_PATH .'/modules/storefront/models/validate/',
 'validate'
);

 $this->addElementPrefixPath(
 'Storefront_Filter',
 APPLICATION_PATH . '/modules/storefront/models/filter/',
 'filter'
);

 $this->setMethod('post');
 $this->setAction('');

 // get category select
 $form = new Storefront_Form_Catalog_Category_Select(
 array('model' => $this->getModel())
);
 $element = $form->getElement('categoryId');
 $element->clearDecorators()->loadDefaultDecorators();
 $element->setRequired(true);
 $this->addElement($element);

 $this->addElement('text', 'name', array(
 'label' => 'Name',
 'filters' => array('StringTrim'),
 'required' => true,
));

 $this->addElement('text', 'ident', array(
 'label' => 'Ident',
 'filters' => array('StringTrim','Ident'),
 'validators' => array(
 array('UniqueIdent', true, array($this
 ->getModel(), 'getProductByIdent'))
),
 'required' => true,
));

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[276]

 $this->addElement('text', 'shortDescription', array(
 'label' => 'Short Description',
 'required' => true,
 'filters' => array('StringTrim'),
 'validators' => array(array('StringLength',true,
 array(1,255))),
));

 $this->addElement('text', 'price', array(
 'label' => 'Price',
 'required' => true,
 'validators' => array('Float')
));

 $this->addElement('text', 'discountPercent',array(
 'label' => 'Discount %',
 'value' => 0,
 'required' => true,
 'validators' => array('Int'),
));

 $this->addElement('select', 'taxable', array(
 'label' => 'Taxable?',
 'multiOptions' => array('Yes' => 'Yes', 'No' => 'No')
));

 $this->addElement('textarea', 'description', array(
 'label' => 'Full Description',
 'filters' => array('StringTrim'),
 'required' => true,
));

 $this->addDisplayGroup(array(
 'categoryId',
 'name',
 'ident',
 'shortDescription',
 'price',
 'discountPercent',
 'taxable',
 'description'
), 'productInfo', array('legend' => 'Product Information'));

 $this->addElement('submit', 'add', array(
 'label' => 'Add Product',
 'decorators' => array('ViewHelper',array
 ('HtmlTag',array('tag' => 'dd'))),
));
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[277]

This will produce a form, as shown in the following screenshot:

As we can see, the product add form is fairly weighty but most of this has already
been covered in our previous forms. However, we have introduced a few new
things, so let's have a look at those. Also note that we have not used a base form class
for the product form. In a normal application, we would probably use a base class as
we would want to use the form for more than just adding context. For now though
we will keep it simple.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[278]

Sharing form elements
The first difference from our other forms is that we are using another form to create
the category drop-down menu for the product form, which is a common requirement
as we don't want to duplicate our code. Therefore, we use the other form within our
product form while pulling the element we want from that form. Let's have a look at
the code:

$form = new Storefront_Form_Catalog_Category_Select(
 array('model' => $this->getModel())
);
$element = $form->getElement('categoryId');
$element->clearDecorators()->loadDefaultDecorators();
$element->setRequired(true);
$this->addElement($element);

So to share elements from another form, we simply instantiate the form that we want
to get the element from, in this case the Catalog_Category_Select form class. We
imported this form when we copied the assets folder contents into our application,
and it simply queries the Catalog Model and creates an HTML select element for the
Storefront categories.

When we instantiate the Catalog_Category_Select form, we also pass in an
options array containing the Model to use for the lookup. In this case, this is the
Catalog Model which is already registered to the Product Add form ($this-
>getModel()). Once we have the form instance, we then retrieve the categoryId
element from it. This will give us the select element populated with the
Storefront categories. We then need to reset the decorators for the element as the
categoryId element uses non default decorators. We do this by calling $element-
>clearDecorators()->loadDefaultDecorators();, which will first clear the
element's decorators and then load the default ones for that element. After this, all
that is left to do is set the element required and add the element to the form.

If we share elements, then it is important that we document it clearly and try not
to overuse this technique. If we do it too often, then we will end up with a mess of
interdependencies that will become hard to track. Another way of sharing common
elements like this would be to create our own form element class.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[279]

Custom filters
The forms Ident field uses a custom filter to convert the product ident into a URL
friendly format. Using custom filters in forms works in the same way as validators,
which we have used before.

$this->addElementPrefixPath(
 'Storefront_Filter',
 APPLICATION_PATH . '/modules/storefront/models/filter/',
 'filter'
);

Before we can use our custom filter, we need to let the form know where our filters
are kept. We do this by using the addElementPrefixPath() method. While defining
the validator path, we specify a namespace Storefront_Filter that our filter
classes will be prefixed with, the path to the filter directory, and finally the type,
which is filter.

To create a filter, we need to create a new class within the filter directory that will
implement the Zend_Filter_Interface interface. This interface defines one method
filter(), which will be used to return the transformed data.

application/modules/storefront/models/filter/Ident.php

class Storefront_Filter_Ident implements Zend_Filter_Interface
{
 public function filter($value)
 {
 $find = array('`', '&', ' ', '"', "'");
 $replace = array('', 'and', '-', '', '',);
 $new = str_replace($find, $replace,$value);

 $noalpha =
 'ÁÉÍÓÚÝáéíóúýÂÊÎÔÛâêîôûÀÈÌÒÙàèìòùÄËÏÖÜäëïöüÿÃãÕõÅåÑñÇç@°ºª';
 $alpha =
 'AEIOUYaeiouyAEIOUaeiouAEIOUaeiouAEIOUaeiouyAaOoAaNnCcaooa';

 $new = substr($new, 0, 255);
 $new = strtr($new, $noalpha, $alpha);

 // not permitted chars are replaced with "-"
 $new = preg_replace('/[^a-zA-Z0-9_\+]/', '-', $new);

 //remove -----'s
 $new = preg_replace('/(-+)/', '-', $new);

 return rtrim($new, '-');
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[280]

This filter will take the value of the ident field and transform it from something like
my product to my-product. It also removes any invalid characters that would break
the URI. To use our filter, we simply need to define it in the filters array for our
element. In this case, this is the ident element.

The rest of our form uses functionality that we have already covered and defines all
the elements we require to create a valid product. Next, we will use this form in our
Catalog Model to validate and filter the input.

Catalog Model
Now that our form is ready, we can add the saveProduct() method to the Catalog
Model, edit the Catalog Model, and add the following method:

application/modules/storefront/models/Catalog.php

public function saveProduct($data, $validator = null)
{
 if (null === $validator) {
 $validator = 'add';
 }

 $validator = $this->getForm(
 'catalogProduct' . ucfirst($validator)
);

 if (!$validator->isValid($data)) {
 return false;
 }

 $data = $validator->getValues();

 return $this->getResource('Product')->saveRow($data);
}

The saveProduct() method accepts two parameters—$data and $validator.
$data should contain an array of the product data, and $validator is an optional
parameter that can be used to define the form to use for validation and filtering.

In the method body, we first default the validator to the add form if $validator
is null. We then get the form and use it to validate the incoming $data array. If
validation fails, then we will return false. Next, we filter the data by retrieving the
values from the form using the getValues() method. Once we have the filter data,
we can then get the Product Resource and save the data to the database using the
saveRow() method.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[281]

Catalog Controller
Now that our Model has the ability to save products, we can start putting
everything together in our Controller. Edit the CatalogController, and add
the following methods:

application/modules/storefront/controllers/CatalogController.php

public function addproductAction()
{
 $this->view->productForm = $this->_getProductForm();
}

The addproduct Action is used to display the product add form. In this Action, we
simply assign the form to the View using the _getProductForm() method.

application/modules/storefront/controllers/CatalogController.php

protected function _getProductForm()
{
 $urlHelper = $this->_helper->getHelper('url');

 $this->_forms['addProduct'] = $this->_catalogModel
 ->getForm('catalogProductAdd');
 $this->_forms['addProduct']->setAction($urlHelper->url(array(
 'controller' => 'catalog' ,
 'action' => 'saveproduct'
),
 'admin'
));
 $this->_forms['addProduct']->setMethod('post');

 return $this->_forms['addProduct'];
}

The _getProductForm() method configures and returns the product add form. This
is the same technique that we have used previously in our other Controllers.

application/modules/storefront/controllers/CatalogController.php
public function saveproductAction()
{
 $request = $this->getRequest();

 if (!$request->isPost()) {
 return $this->_helper->redirector('addproduct');
 }

 if(false === ($id = $this->_catalogModel->saveProduct
 ($request->getPost()))) {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[282]

 $this->view->productForm = $this->_getProductForm();
 return $this->render('addproduct');
 }

 $redirector = $this->getHelper('redirector');
 return $redirector->gotoRoute(
 array('action' => 'productimages', 'id' => $id),
 'admin'
);
}

The saveproduct Action is where the product add form will submit its data to so
the Action will create a new product for us. This Action first checks whether the
post data is present. If not, then we redirect the user back to the addproduct Action.
We then try to create the new product by calling the saveProduct() method on
the Catalog Model. If validation fails, then we re-render the product add form so
that the user can correct the missing data. Notice that we also assign the return of
the saveProduct() method to the $id variable. This is done so that if the product
is successfully created, we have the insert ID for that product to use later. If the
product is created, we then redirect the user to the productimages Action. This
action was included in the imported example files and allows users to add their
images to the product. To perform the redirect, we use the redirector Action Helper's
gotoRoute() method. This enables us to easily redirect to the Admin route and also
set the productId so that the productimages action knows which product to add
the images to.

With our Form, Model, and Controller created, we should now be able to add
products to the catalog. By using the pseudo admin module, we can see that we have
been able to keep all the admin related functionality within the Storefront module.
This can help greatly if we want to use our module within another application.

Securing the administration area
The final part we need to look at is security. We need to make sure that people
cannot access the admin functionality without the correct permissions. To achieve
this, we will use the ACL that we created in the previous chapter, which we added to
the default ACL for the storefront module. We will use this Resource as the Resource
for our pseudo Admin module. This is because the module does not actually exist,
and we need to be able to check if users are allowed access to it.

application/modules/storefront/models/Acl/Storefront.php

$this->add(new Storefront_Model_Acl_Resource_Admin)
 ->allow('Admin');

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[283]

Looking at the Storefront_Acl_Storefront class, we can see that when we
registered the Admin Resource with the ACL, we also allowed access to the Admin
Role. This means that only users with the Admin Role are allowed to access the
Admin Resource.

As our ACL is already configured, all we need to do is query it in our Controllers
when we want to restrict access to a certain Action. However, this does move some
of our ACL checking into the application layer of our application, though we will
still secure our Catalog Model using the Model ACL implementation a little later on.

ACL action helper
Rather than duplicating our ACL querying code in each Controller, we are going to
create an Action Helper to encapsulate this for us. Create the following class in the
SF library:

library/SF/Controller/Helper/Acl.php

class SF_Controller_Helper_Acl extends
 Zend_Controller_Action_Helper_Abstract
{
 protected $_acl;
 protected $_identity;

 public function init()
 {
 $module = $this->getRequest()->getModuleName();
 $acl = ucfirst($module) . '_Model_Acl_' . ucfirst($module);

 if (class_exists($acl)) {
 $this->_acl = new $acl;
 }
 }

 public function getAcl()
 {
 return $this->_acl;
 }

 public function isAllowed($resource=null, $privilege=null)
 {
 if (null === $this->_acl) {
 return null;
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[284]

 return $this->_acl->isAllowed($this->getIdentity(),
 $resource, $privilege);
 }

 public function setIdentity($identity)
 {
 if (is_array($identity)) {
 if (!isset($identity['role'])) {
 $identity['role'] = 'Guest';
 }
 $identity = new Zend_Acl_Role($identity['role']);
 } elseif (is_scalar($identity) && !is_bool($identity)) {
 $identity = new Zend_Acl_Role($identity);
 } elseif (null === $identity) {
 $identity = new Zend_Acl_Role('Guest');
 } elseif (!$identity instanceof Zend_Acl_Role_Interface) {
 throw new SF_Model_Exception('Invalid identity
 provided');
 }
 $this->_identity = $identity;
 return $this;
 }

 public function getIdentity()
 {
 if (null === $this->_identity) {
 $auth = Zend_Auth::getInstance();
 if (!$auth->hasIdentity()) {
 return 'Guest';
 }
 $this->setIdentity($auth->getIdentity());
 }
 return $this->_identity;
 }

 public function direct($resource=null, $privilege=null)
 {
 return $this->isAllowed($resource, $privilege);
 }
}

Action Helper work much in the same way as Front Controller plugins. They have
three main hooks that we can use, init(), preDispatch(), and postDispatch().
These are called during the dispatch of the Action Controllers. Therefore, init() is
called during the Action Controller initialization, preDispatch() is called before
the Action Controller preDispatch, and postDispatch() is called before the Action
Controller postDispatch.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[285]

In the ACL Helpers init() method, we load the correct ACL for the module
being requested. We do this by getting the module name from the Request
object and then instantiating the ACL class. In our case, this will be
Storefront_Model_Acl_Storefront.

The getAcl() method is a simple getter and returns the ACL class stored in the
$_acl class property.

The isAllowed() method will query the ACL for us. It accepts two parameters—
$resource and $privilege. The $resource will be a string identifying the resource
that we are querying and the $privilege will be a string identifying the permission
we are querying. The method returns the output of the ACL's isAllowed() method.
We pass in the identity, resource, and privilege to query the ACL.

The setIdentity() and getIdentity() methods are simply copied from the ACL
abstract class and get and set the identity, defaulting to the identity stored in the
Zend_Auth session.

Our final method is direct(). This is another Action Helper specific method, which
is used to proxy calls to the helper of the isAllowed() method. This will then allow
us to call the isAllowed() method directly on the Helper Broker, so that we don't
have to get the Helper from the Broker each time we use it.

Once we have created the Action Helper, we need to register it with the Helper
Broker. Add the following to the Bootstrap:

application/bootstrap/Bootstrap.php

protected function _initActionHelpers()
 {
 $this->_logger->info('Bootstrap ' . __METHOD__);
 Zend_Controller_Action_HelperBroker::addHelper(new
 SF_Controller_Helper_Acl());
 Zend_Controller_Action_HelperBroker::addHelper(new
 SF_Controller_Helper_RedirectCommon());
 }

To register an Action Helper with the Helper Broker, we simply call the static
addHelper() method of the Zend_Controller_Action_HelperBroker class while
passing in a new instance of the Helper. This will then make the Helper available to
our Controllers.

We have also registered the RedirectCommon Action Helper. This is used to
encapsulate common redirects that the application uses, and currently has one
redirect that is to the login page. The RedirectCommon Helper is included within
the files we imported earlier.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[286]

Securing the Admin functions
Now that we have our Action Helper, we can secure the Admin functions contained
within our Controller. Update the CatalogController methods with the following:

application/modules/storefront/controllers/CatalogController.php

public function addproductAction()
{
 if (!$this->_helper->acl('Admin')) {
 return $this->_helper->redirectCommon('gotoLogin');
 }
 $this->view->productForm = $this->_getProductForm();
}

public function saveproductAction()
{
 if (!$this->_helper->acl('Admin')) {
 return $this->_helper->redirectCommon('gotoLogin');
 }

Our updated Actions will now check the ACL before they process the Action. We
do this by calling the ACL helper and passing in the 'Admin' string. This will then
return true or false if the current user is authorized to perform the Action. If the
user is not authorized, then we use our RedirectCommon Helper to redirect them to
the login page.

We can now secure all our Actions that are within the pseudo Admin module. We
could also reduce the code here by maintaining a list of Actions that should be
restricted, and then we can use a preDispatch hook to automatically check those
Actions before they are dispatched.

Catalog Model ACL
Next we need to update the Catalog Model so that it implements our ACL
functionality. Update the Catalog Model with the following (we have removed
the other methods for brevity):

application/modules/storefront/models/Catalog.php

class Storefront_Model_Catalog extends SF_Model_Acl_Abstract
{
/** ... */

 public function saveProduct($data, $validator = null)
 {
 if (!$this->checkAcl('saveProduct')) {

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 9

[287]

 throw new SF_Acl_Exception("Insufficient rights");
 }

 if (null === $validator) {
 $validator = 'add';
 }

 $validator = $this->getForm(
 'catalogProduct' . ucfirst($validator)
);

 if (!$validator->isValid($data)) {
 return false;
 }

 $data = $validator->getValues();

 return $this->getResource('Product')->saveRow($data);
 }

 public function getResourceId()
 {
 return 'Catalog';
 }

 public function setAcl(SF_Acl_Interface $acl)
 {
 if (!$acl->has($this->getResourceId())) {
 $acl->add($this)
 ->allow('Admin', $this);
 }
 $this->_acl = $acl;
 return $this;
 }

 public function getAcl()
 {
 if (null === $this->_acl) {
 $this->setAcl(new Storefront_Model_Acl_Storefront());
 }
 return $this->_acl;
 }
}

Here we have followed the same conventions we used in the User Model. We first
change the base class that the Model uses to SF_Model_Acl_Abstract rather than
SF_Model_Abstract. Next we need to implement the ACL specific methods, namely,
getResourceId(), setAcl(), and getAcl().

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

The Administration Area

[288]

The getResourceId() method returns the string Catalog, which will be the identifier
for the Catalog Model in the ACL.

The setAcl() method configures the ACL for the Model. Here we simply allow the
Admin Role access to all actions.

The getAcl() method will instantiate the Storefront ACL for us.

The final modification to the Catalog Model is to query the ACL within the
saveProduct() method. Here we check whether the current user has access to the
saveProduct action. If not, then we throw an exception.

With all that done, our Catalog Model is now secured from unauthorized access. We
can see that with the new Model ACL functionality it is quick and easy to implement
the ACL within our Models.

Summary
In this chapter, we have looked at how we can add administrative functionality
to an application and the options we have when doing this. Our Storefront is now
complete. Although not all the features are included, we have come a long way
and hopefully covered many important aspects of the Zend Framework. There are
still many features that you can try to implement by yourselves such as adding the
ability to edit products. You may find this a good place to start practicing some of the
techniques we have covered throughout the book. In the next chapter, we are going
to take a look back at the Storefront and cover some aspects that we have not been
able to cover in the previous chapters.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup
Now that we have completed the development of the Storefront, we are going to look
at some of the topics we did not have time to cover in the previous chapters.

In this chapter, we will cover:

Using multiple modules
Sharing elements between modules
Using Services in modules
Using Services to extend the Model

Using multiple modules
To start, let's look at how we configure multiple modules. To do this, we are going to
use Zend_Application. This makes configuration of modules very easy because all
we need to do is create a bootstrap class for each of our modules and then enable the
Module's Bootstrap Resource in our configuration file.

Setup
Before we start configuring our modules, we need a new module to work with.
Instead of going through the process again, we have included the new module with
the example files for this chapter. Therefore, to get started, copy the cms directory in
the assets directory of the example files into the modules directory of the Storefront.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[290]

We also have a new database table and some data that need to be added to the
Storefront's database. Run the following SQL queries to create the new table, and
add the default data:

CREATE TABLE `page` (
 `pageId` INT NOT NULL AUTO_INCREMENT,
 `title` varchar(200) NOT NULL,
 `body` Text NOT NULL,
 PRIMARY KEY (`pageId`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `storefront`.`page` VALUES (1,'Welcome','Welcome to the
 storefront');

Configuring Zend_Application
To configure Zend_Application to initialize our new module, we simply need to
add in the correct setting to the store.ini.

Open store.ini and add the following to the bootstrap section:

application/config/store.ini

[bootstrap]
resources.modules[] =

By doing this, we are telling Zend_Application that we want to use the Modules
Bootstrap Resource plugin. The Modules plugin will load a separate bootstrap
class for each of our modules excluding the default module. This is the entire
configuration required to get Zend_Application working with multiple modules.

Bootstrapping modules
Now that we have enabled the Modules Resource plugin, it will try to load a
bootstrap class for each of our modules. Therefore, we need to create a new bootstrap
class for the cms module. Create the following class within the cms module folder:

application/modules/cms/Bootstrap.php

class Cms_Bootstrap extends Zend_Application_Module_Bootstrap
{
 public function _initModuleResourceAutoloader()
 {
 $this->getResourceLoader()->addResourceTypes(array(
 'modelResource' => array(
 'path' => 'models/resources',

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[291]

 'namespace' => 'Resource',
)
));
 }
}

The new Cms_Bootstrap class will now be loaded and executed during the bootstrap
process. The way we name this file is important as the Modules Resource plugin
needs to be able to find the class. We must name the file Bootstrap.php and name
the class using the module name (Cms) and _Bootstrap. Moreover, as this is a
module bootstrap, we also subclass the Zend_Application_Module_Bootstrap
rather than the Zend_Application_Bootstrap_Bootstrap, like we did in the main
bootstrap class earlier.

The Zend_Application_Module_Bootstrap provides some extra functionality for
us to help with the configuration of our modules, this being that it will automatically
register our module with the autoloader. If we look back to our main bootstrap class,
we can see that we have manually configured the autoloader for the default module.

application/boostrap/Bootstrap.php

protected function _initDefaultModuleAutoloader()
 {
 $this->_logger->info('Bootstrap ' . __METHOD__);

 $this->_resourceLoader = new
 Zend_Application_Module_Autoloader(array(
 'namespace' => 'Storefront',
 'basePath' => APPLICATION_PATH . '/modules/storefront',
));
 $this->_resourceLoader->addResourceTypes(array(
 'modelResource' => array(
 'path' => 'models/resources',
 'namespace' => 'Resource',
)
));
 }

The Zend_Application_Module_Bootstrap will automatically do the above for us.
Now, all that is left for us to do is customize the autoloader for our needs, which we
do in the Cms_Bootstrap _initModuleResourceAutoloader() method.

To customize the autoloader so that it will autoload our Model Resources, we simply
get the Resource Loader and call the addResourceTypes() method by passing in
the Model Resource path and namespace information, just like we did in the main
Bootstrap class.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[292]

Another important part of the module bootstrapping is the order in which bootstrap
resources are executed. Consider the following diagram:

Bootstrap()

Main Bootstrap Class
Resources

_init...()

Main Bootstrap Plugin
Resources

resources.N
...

Module Plugin
Resource

resources.modules[] =

ModuleN Class
Resources

_init...()
Next Module

ModuleN Plugin
Resources

resources.moduleN.pluginResource

Main Bootstrap Plugin
Resources

(Remaining)

resources.N
...

Bootstrap Complete

Here we can see the full bootstrap process. The basic flow of this is as follows:

1. The main bootstrap class is called.
2. The main bootstrap class resources are called,

for example, _initViewSettings().
3. The main bootstrap plugin resources are called, for example,

Zend_Application_Resource_Frontcontroller.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[293]

4. The modules plugin resource is called. This will iterate over all the modules
and call their respective bootstraps—each modules bootstrap class and
bootstrap plugin resources are called.

5. The remaining bootstrap plugin resources are called.
6. Bootstrapping is completed.

There are a couple of important things to note about the module bootstrap process:

The module bootstraps are executed during application initialization and not
when the module is requested. A common mistake is to expect the module
bootstrap resources to be called only when a module is accessed.
Because the modules are bootstrapped using a plugin resource within
the main bootstrap, this means that if we need one of the main bootstrap
resources to be called before the module bootstrap resources, we must
put these resources above the resources.modules[] = in the
Zend_Application configuration.

Module specific configuration
When using the Modules Resource, we can also provide module specific
configuration. For example, if we have a module that used a different
database connection, then we can specify this in the config file of our
Zend_Application using:

cms.resources.db.adapter = “MYSQLI”
cms.resources.db.params.dbname = “cms”
cms.resources.db.params.username = “root”
cms.resources.db.params.password = “root”

Here we have changed the cms modules database adapter to MySQLI and the
database schema to cms.

Sharing common elements
Another common use case when using modules is the ability to share or have global
elements. By default, Zend_Application will make a lot of elements accessible
through the autoloader for us. These are:

Models
Forms
Plugins
Services
Model dbtables

•

•

•
•
•
•
•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[294]

The Module Bootstrap Resource plugin will add the above to the autoloader during
the bootstrap process, and this means that we can simply instantiate them anywhere
in the application. For example, if we are within one of the Storefront modules
Action Controllers:

$myModel = new Cms_Model_Test();

This will now work because the Cms Models are registered with the autoloader.

While Zend_Application can do a lot for us, there are still some things that we need
to configure ourselves. One such thing is View Helpers and this need to be accessed
on a global basis quite regularly. Therefore, we will refactor our application so that
we can have shared View Helpers.

To start, create a new directory in the application directory called views and inside
this, another directory called helpers. This is the standard place where views are
stored if we are not using modules and it can act as a good place for our global
View Helpers. Once we have the directories created, move the BaseUrl.php from
application/modules/storefront/views/helpers into the new helpers
directory. By doing this, we have now broken our application. If we run it now,
then the product pages will throw errors saying that the BaseUrl View Helper
was not found. To fix this, edit the Bootstrap class and add the following to the
_initView() method:

application/bootstrap/Bootstrap.php

protected function _initView()
{
 // ...

 $this->_view->addHelperPath(
 APPLICATION_PATH . '/views/helpers', 'Zend_View_Helper'
);

 // ...
}

Here we have simply added another helper path to Zend_View, which will now tell
Zend_View to search this directory for our global helpers. Notice that we have given
the namespace here as Zend_View_Helper_, and this means that we also need to
rename the BaseUrl class to reflect this change.

class Storefront_View_Helper_BaseUrl

Change to:

class Zend_View_Helper_BaseUrl

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[295]

With this done, our application is now fixed and the Cms modules views can now use
the BaseUrl View Helper.

In general, anything not globally accessible through the autoloader will need to have
extra configuration applied to during the bootstrap process to make them accessible.
Another good way of doing this is to add the elements into the library, as the
autoloader will be able to load them from there anyway.

Services
We have already used services within the Storefront to provide authentication and
taxation functionality. However, Services can also provide an extra important layer
to our application from which we can extend and encapsulate additional business
logic. Next, we will look at two examples of how services can be used to help us.

Services for cross module communication
When we are using multiple modules, it is very likely that we will need to share the
functionality stored in the Models between each module. With Zend_Application,
this is very easy as all we need do is instantiate the other module's Models. For
example, if we are inside the Storefront module and want to access the Cms
module's Models, then we can simply do:

$model = new Cms_Model_Page();

When we instantiate the Model from within the Storefront module, the autoloader
will automatically include the class for us. However, as soon as we instantiate
another module's Model, our current module immediately depends on the other,
which makes our modules very hard to reuse. We may also want to only provide a
limited API to the Model if it is accessed from within another module. Obviously,
we can't stop developers from instantiating the Models directly, but we may want
to have a convention where developers are told not to instantiate them directly.

To get around these problems, we can use a Service. By using a Service, we can
mediate access to the Model's functionality and introduce a layer through which
all inter-module communication is handled.

As an example, we are going to create a Service that the Storefront can use to access
the Page Model of the Cms module. This Model is included within the assets that we
imported earlier.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[296]

Create the following Service for the Cms module:

application/modules/cms/services/Page.php

class Cms_Service_Page
{
 protected $_pageModel;

 public function __construct()
 {
 $this->_pageModel = new Cms_Model_Page();
 }

 public function getPageById($id)
 {
 return $this->_pageModel->getPageById($id);
 }
}

The Cms module's Page Service is very simple and essentially composites the
Cms_Model_Page class. It has one public method getPageById(), which returns
the output of the Page Models getPageById() method.

This Service only uses one Model. However, we could also use a Service to
encapsulate many Models from a module. This means that we can group Models
from a module together and provide a simplified API to our other modules.

Now that we have our Page Service, we can use it within the Storefront module by
simply instantiating it.

$pageService = new Cms_Service_Page();

This then gives us access to the Page Model. However, by doing this, we are creating
an inter-module dependency, and the Storefront module now depends on the
Cms module. There is no simple way to get around this dependency. After all, if our
Storefront module needs the functionality, then it is always going to depend on it.
However, we can add checks to see if the Service exists and then not use it if it's
not present.

To do this, we are going to create an Action Helper that will find Services for us:

library/SF/Controller/Helper/Service.php

class SF_Controller_Helper_Service extends
Zend_Controller_Action_Helper_Abstract
{
 protected $_services = array();

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[297]

 public function getService($service, $module)
 {
 if (!isset($this->_services[$module][$service])) {
 $class = implode('_', array(
 ucfirst($module),
 'Service',
 ucfirst($service)
));

 $front = Zend_Controller_Front::getInstance();
 $classPath = $front->getModuleDirectory($module)
 . '/services/' . ucfirst($service) . '.php';
 if (!file_exists($classPath)) {
 return false;
 }
 if (!class_exists($class)) {
 throw new SF_Exception(“Class $class not found in “
 . basename($classPath));
 }
 $this->_services[$module][$service] = new $class();
 }
 return $this->_services[$module][$service];
 }

 public function direct($service, $module)
 {
 return $this->getService($service, $module);
 }
}

This is our Service Finder (not to be confused with the Service Locator Pattern) and
will check if a Service is available for us to use. The getService() method will first
check if the Service has already been instantiated. If it has, then it will return the
cached instance. If not, then we try to instantiate a new Service instance by creating
the class name from the $service and $module parameters. We then use the Front
Controller to get the path to the modules directory and check if the Service class file
actually exists. We do this because if we just use class_exists, then the autoloader
will throw a not found exception. We suppress the not found exception because we
want to be able to see if the Service is available and do not want exceptions thrown
if it does not exist. If the file does exist, then we do one final check to make sure
the Service class is within the file and then simply instantiate a new instance of the
Service class.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[298]

Now that our Service Action Helper is created, we need to register it with the Helper
Broker. Edit the bootstrap class and add the following:

application/bootstrap/Bootstrap.php

protected function _initActionHelpers()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);
 Zend_Controller_Action_HelperBroker::addHelper(
 new SF_Controller_Helper_Acl()
);
 Zend_Controller_Action_HelperBroker::addHelper(
 new SF_Controller_Helper_RedirectCommon()
);
 Zend_Controller_Action_HelperBroker::addHelper(

 new SF_Controller_Helper_Service()

);

}

Our Service Action Helper is now ready to use. To test it, we are going to replace the
home page welcome text with text pulled from the Cms Page Model. Update the
storefront modules IndexController with the following:

application/modules/storefront/controllers/IndexController.php

public function indexAction()
{
 if ($service = $this->_helper->service('page', 'cms')) {
 $this->view->page = $service->getPageById(1);
 }
}

The indexAction of the IndexController now checks to see if the Page Service
exists in the Cms module. If it does, then we use the Service to assign the page
data to the View. To see this in action, we also need to update the index.phtml
View Script.

application/modules/storefront/views/scripts/index/index.phtml

<? if($this->page): ?>
<h3><?=$this->page->title;?></h3>
<p>
 <?=$this->page->body; ?>
</p>
<? endif; ?>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 10

[299]

We have removed the static HTML from the View Script and replaced it with the
data from the Page Service. Additionally, we have wrapped this in an IF statement
so that nothing is rendered if the data is not present.

Now when we visit the home page, the data from the Page Model that is stored in
the page table of the database is displayed. If we were to delete the Page Service file
from the Cms module, then nothing would be displayed.

By doing this, we have reduced the effects of the dependency between the two
modules. We do, of course, have to add each check within our code to check whether
the Service is available, but it goes a short way in achieving more portable modules.

Services for extending model behavior
Another great use for a Service is to extend the model's behavior. By using Services,
we can easily create many different endpoints that our application can use when the
Models are required in different contexts.

For example, our current Models in the Storefront mainly return Objects. However,
there are times when we would probably want to have the data returned in a
different format. The temptation here is to do the reformatting of the data within our
Controllers. However, if we reformat any data within a Controller, we cannot reuse
that transformation code, meaning that we will need to duplicate the code whenever
we need that format. The second temptation would be to add a method to the Model
or extend it to add the extra functionality. However, this could make our Models
very large, and by extending we get all the problems associated with inheritance.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Roundup

[300]

To get around this problem, we can move this code into a Service. In this way, we
can easily reuse it, and it is using composition over inheritance. A good example of
this is when we want to get data using Ajax; consider the following Service class:

class Storefront_Service_Cart
{
 protected $_cartModel;

 public function __construct()
 {
 $this->_cartModel = new Storefront_Model_Cart();
 }

 public function getItems()
 {
 $items = array();

 foreach($this->_cartModel as $item) {
 $items[] = array(
 'name' => $item->name,
 'productId' => $item->productId,
 'lineCost' => $item->getLineCost(),
);
 }

 return Zend_Json::encode($items);
 }
}

This Service class extends the Cart Models functionality and adds a JSON layer to
our application. Now, whenever we need the Cart data in a JSON format, we can use
the Cart Service class to output the formatted data. This is a very simple example, but
we could be querying many Models within one Service to create highly customized
data for our JavaScript layer to use. By doing so, we have cleanly separated this
behavior from the rest of our application, which should make maintenance of the
code much easier in the future.

Summary
In this chapter, we have covered the use and configuration of multiple modules, how
we can use Services to communicate between modules, the problems of cross module
communication, and how to use Services to extend Models and add extra Service
layers to our application. In the last two chapters, we are going to look at how we
can optimize the Storefront and how we can test our application using PHPUnit.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization
An important part of any application is performance. All that we want is to get the
best out of our application and where possible, reduce server costs. In this chapter,
we will look at how to tune the Zend Framework and improve the performance of
the Storefront application. This will include:

Opcode caching
PHP optimizations
Autoloading and Require statements
Zend Frameworks standard caches
Caching Model output

General optimizations
To start, we will look at some of the standard ways in which we can improve the
performance of our application. These will include both optimizations of the Zend
Framework components and PHP in general.

Opcode caching
As PHP is an interpreted language, when we execute a PHP source file, the PHP
engine must compile the source file into something that the machine can understand.
This something is opcode. The opcode has to be generated for every request, meaning
that the PHP engine has to do a lot of work, especially for a framework that has many
files to compile per request.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[302]

To get around this, we can use an opcode cache. This will cache the opcode
generated by the first request. Moreover, on subsequent requests, it will run the
opcode stored in the cache instead of having to re-compile the source file. By
doing this, we can totally skip the compilation step, which can save us a lot of
CPU and memory.

There are a few opcode caches available for PHP. For the Storefront, we are going
to use APC (Alternative PHP Cache). However, you may want to have a look at the
other offerings, which are:

eAccelerator (http://eaccelerator.net)
Alternative PHP Cache (http://pecl.php.net/package/APC)
XCache (http://xcache.lighttpd.net)
Zend Platform (http://www.zend.com/products/platform)
Zend Server (http://www.zend.com/products/server/)

Some of these are Open Source while others are Commercial. You can choose
whichever one you like most as they all achieve the same goal.

To use an opcode cache, we must first install it. For us, this is going to be APC.
APC is available through PHP PECL (http://pecl.php.net) and therefore can be
installed easily on most systems. To install it on Linux and OSX, we simply need to
install it through the PECL command line tool:

pecl install apc

This will then download and compile the PHP extension for us. Note that you will
need the devel PHP packages that contain the tools to compile extensions. Now, on
Windows as compilation can be a headache, the easiest way is to get the precompiled
binaries of the php_apc.dll. The precompiled binaries for Windows were available
at http://pecl4win.php.net/, however, this service has now been pulled.
The only other place providing precompiled binaries at the time of writing is
http://downloads.php.net/pierre/. You may need to do some searching
to find them otherwise.

Path optimizations
As of PHP 5.1, the paths used to include and require files in PHP are now cached
using the realpath cache. This cache helps to speed up the file inclusion in PHP.
However, to get the most out of it, we need to use absolute paths. Therefore, we can
edit the application.php.dist file and change our relative paths to absolute ones.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[303]

application/application.php.dist

<?php
$paths = array(
 realpath(dirname(__FILE__) . '/../library'),
 '.',
);
set_include_path(implode(PATH_SEPARATOR, $paths));

Here we have changed the way we set our include paths. Instead of using
relative paths like ../library, we are now using the realpath() function to
find the absolute path to the library directory. We have also removed the
get_include_path() from the paths array. This is another optimization. The less
paths we have in our include path, the quicker PHP can check them. However, this
does mean we can no longer use PEAR packages, as the default include path to these
has been removed.

Along with the realpath cache, there are also some php.ini directives that we
should be aware of. These are:

realpath_cache_size
realpath_cache_ttl

The cache size by default is 16k, which is quite small and should probably be
increased to 32, 64, or 128. However, I would suggest some trial and error with
this to find what works best for your system.

The TTL (time to live) of the cache by default is 120 seconds. This can also be
increased and again requires some trail and error to get it right. Remember though,
this can affect changes to the applications file system. If you move a file, for instance,
the cache will have the old path, and this could possibly cause errors! Therefore, it is
best to only do this on production systems and remember to restart the web server
when deploying changes.

Requires and includes
Along with optimizing our include paths, we also need to optimize our class
includes. Traditionally, require_once and include_once are slow in PHP. This was
vastly improved after PHP 5.1 but they can still affect performance. The storefront
does not use many require statements at all as it uses Zend_Loader_Autoloader to
include its resources and is faster than using require_once. Therefore, wherever
possible, we want to use the autoloader over require_once or include_once. As
we have already done this in the storefront application, the only thing left using
require_once is the Zend Framework library itself. This is mainly because it can
be used as a component library as well as a fully fledged framework, and therefore
needs to be distributed with the require_once statements.

•
•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[304]

To make the framework use the autoloader, we need to remove all the
require_once statements from the library. We are going to use Apache
Ant to remove them for us. Add the following to the build.xml:

build/build.xml

<target name="deploy">
 <echo message="---- Removing require_once ----" />
 <replaceregexp byline="true">
 <regexp pattern="require_once 'Zend/"/>
 <substitution expression="// require_once 'Zend/"/>
 <fileset dir="${basedir}/library/Zend"
 excludes="**/*Autoloader.php" includes="**/*.php" />
 </replaceregexp>
 </target>

This build target will comment out all the require_once statements in the source
files contained within the library/Zend directory excluding the Autoloader.php
file. This uses the standard replaceregex Ant task that is shipped with Ant. To
run the target, we simply need to run the following command from within the
build directory:

ant deploy

After doing this, we again need to edit the application.php.dist file so that the
Autoloader is included as well as the Zend_Application.

application/application.php.dist

require_once 'Zend/Loader/Autoloader.php';

require_once 'Zend/Application.php';

With this done, our application should now run as normal. Obviously, we would
only ever do this while deploying an application to a live environment, as there is
little point on a development machine. However, we can see that Ant is very useful
for automating these processes.

Standard caches
Some of the Zend Framework components also provide ways of caching parts of
them to improve performance. These standard caches can dramatically improve
the performance of the components. The components that have caches are:

Zend_Db_Table

Zend_Loader_PluginLoader

Zend_Paginator

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[305]

Zend_Locale

Zend_Translate

Zend_XmlRpc_Server

Zend_Currency

Zend_Date

All of these components can use caching to improve their performance. We are
not going to cover all of them, but generally these components will provide a
setCache() method or something similar that can be used to pass a Zend_Cache
instance to the component. This will then be used to cache some of the heavier
operations that these components perform. For full details on each component's
caching functionality, check the online reference manual.

For the storefront, we are going to use two of these standard caches, namely,
Zend_Db_Table and Zend_Loader_PluginLoader. The Zend_Db_Table component
has to get the table information or metadata for the database table that it is connected
to each time we instantiate a new table instance. This means that Zend_Db_Table
executes a DESCRIBE SQL statement (or equivalent) every time we use a table class.
This, for obvious reasons, can affect our application's performance. The Zend_Loader_
PluginLoader is used by many other components to load plugin resources like View
Helpers. Internally, the Plugin Loader stores a stack of paths that it will scan to find the
file to include. This can affect the performance of our application as the Plugin Loader
must iterate over all the paths while checking for the file in each directory.

Plugin loader cache
We have now identified two places in our application where we can improve
performance by using a cache. Next, we need to fix this by configuring these
components to use a cache and getting rid of some of this heavy work that they
are doing. To start, we will enable the plugin loader cache. To do this, add the
following to the bootstrap class:

application/bootstrap/Bootstrap.php

protected function _initPluginLoaderCache()
{
 if ('production' == $this->getEnvironment()) {
 $classFileIncCache =
 APPLICATION_PATH .
 '/../data/cache/pluginLoaderCache.php';
 if (file_exists($classFileIncCache)) {
 include_once $classFileIncCache;
 }

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[306]

 Zend_Loader_PluginLoader::setIncludeFileCache(
 $classFileIncCache
);
 }
}

Here we have created a new bootstrap class resource called
_initPluginLoaderCache. This method should be the first method in the
class as we want it to be called as early as possible. In the method body, we
first have to check to see if the environment is production. Generally, we
only want to cache things in the production environment as caching in the
development environment could cause unpredictable errors.

To configure the cache, we first need to specify the location where the cache file
should be stored. In this case, this is data/cache/pluginLoaderCache.php. We then
check if the cache file already exists. If it does, then we include the cache file using
include_once. The final step is to tell the Plugin Loader that we are using the cache.
We do this by using the setIncludeFileCache() method and passing in the cache
file location as its only parameter.

The Plugin Loader will now write all the files that it includes to the cache file. The
file's contents will look something like this but much longer:

<?php
include_once 'Zend/Controller/Action/Helper/ViewRenderer.php';
include_once 'Zend/View/Helper/Doctype.php';
include_once 'Zend/View/Helper/HeadMeta.php';
....

As we can see, it is a file that contains PHP include statements. Now when we
include this file in _initPluginLoaderCache(), all the files are automatically loaded
for us, meaning that the Plugin Loader no longer has to do its expensive filesystem
operations to find each file to include.

Db table cache
Now that we have our Plugin Loader using caching, we can move on and address
the issues with Zend_Db_Table. To enable the cache, we are going to need to
configure a Zend_Cache instance and pass this to Zend_Db_Table. Again, we will do
this within the bootstrap class.

application/bootstrap/Bootstrap.php

protected function _initDbCaches()
{
 $this->_logger->info('Bootstrap ' . __METHOD__);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[307]

 if ('production' == $this->getEnvironment()) {
 $frontendOptions = array(
 'automatic_serialization' => true
);

 $cache = Zend_Cache::factory('Core',
 'Apc',
 $frontendOptions
);
 Zend_Db_Table_Abstract::setDefaultMetadataCache($cache);
 }
}

Again, we have created a new bootstrap class resource. This time we have called our
resource _initDbCaches(). This resource does not need to be called too early and so
does not need to go at the top of the bootstrap like the _initPluginLoaderCache().
In the method body, we again check to see if we are in a production environment
because we want any changes to the database tables to be instantly available
during development.

Our next step is to configure a Zend_Cache instance. In this case, we have chosen
to use APC as the cache backend, and this will store the table metadata in memory.
The Zend_Cache has two main elements—the frontend, which controls the cache
settings and the backend, which handles the storage of the data. Typically, when
configuring a Zend_Cache instance, we would provide two sets of options, one
for the frontend and other for the backend. However, APC requires no backend
options. Therefore, we only provide frontend options to Zend_Cache. The frontend
options we use here turn on automatic_serialization. This tells Zend_Cache
to serialize the data before saving it. Serialization will be done using the PHP
serialize() function. For more information on this function, check the PHP
manual. Once we have our configuration options ready for Zend_Cache, we
need to fetch a Zend_Cache instance. To do this, we use the factory method of
Zend_Cache. To the factory() method, we pass the type of frontend and backend
to use as well as the frontend options, which will give us our configured Zend_Cache
instance. We can then instruct Zend_Db_Table_Abstract to use the cache using the
setDefaultMetadataCache() static method. This will make all Zend_Db_Table
instances use the cache.

Now, when we run the application in production, we have eliminated all the calls for
table information that Zend_Db_Table normally makes. We will look at Zend_Cache
in more detail later when we implement caching in our Models.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[308]

Dispatching optimizations
Next we are going to look at how dispatching can affect performance. By dispatching
we mean to dispatch the loop the Front Controller uses to call Action Controllers
in the MVC architecture. We first looked at this way back in Chapter 2, so let's just
recap on what the dispatch loop does. The diagram below shows the dispatching
process for the Zend Framework:

preDispatch

Dispatcher

postDispatch

Action
Controller

Actions
Left?

In the previous diagram, we can see the dispatching part of the MVC Request
Handling process. It shows us how the Front Controller loops while there are
Controller Actions left to call. This looping can affect performance if we overuse it.
The more the loops, the longer dispatching will take. So first, we need to understand
what parts of the Zend Framework can add loops to the dispatching process. Some
of these are:

The Action() Action Helper
The _foward() Action Controller method
The Action Stack
Front Controller and Action Helpers that forward the request

We have to avoid these as much as possible when creating our application. The
worst one performance-wise here is the Action() Action Helper. If we want this
type of functionality, then it is best to use the Action Stack instead. However, the
Action Stack still adds loops to the Dispatch so we also want to avoid this as well.
We have used the Action Stack in the Storefront to populate the main Category
menu. Let's refactor this out now.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[309]

To eliminate the use of the Action Stack from the Storefront, we are going to use a
View Helper instead. Generally this is the best way to create reusable components
that need to appear on every page or act as "widgets". Our View Helper will query
our Model directly for the Categories. The rule we need to follow here is that View
Helpers only have Read access to the Model. They should never write to the Model.
Create the following View Helper:

application/modules/storefront/views/helpers/Category.php

class Storefront_View_Helper_Category extends Zend_View_Helper_
Abstract
{
 public function Category()
 {
 $catalogModel = new Storefront_Model_Catalog();
 return $catalogModel->getCategoriesByParentId(0);
 }
}

Our new View Helper is very simple. It contains a single method Category(), which
instantiates the Storefront_Model_Catalog Model and returns the output of the
getCategoriesByParentId() method. The getCategoriesByParentId() will
return a Zend_Db_Table_Rowset, which we can iterate over in our layout script.
Once we have our View Helper, we can now edit the layout script.

application/layouts/scripts/main.phtml

<h3>select category</h3>

 <? foreach ($this->Category() as $category): ?>
 <a href="<?=$this->url(array('categoryIdent' =>
 $category->ident), 'catalog_category', true
);?>"><?=$category->name; ?>
 <? endforeach; ?>

 </div>

Now in our layout script, we use the Category() View Helper to create the menu
instead of the Response Segment we used earlier with the Action Stack. This then
avoids the use of an extra dispatch loop that was caused by the Action Stack. The
final part of the optimization is to unregister the SF_Plugin_Action Front Controller
Plugin from the Front Controller. To do this, we simply need to delete the following
line from the store.ini file:

resources.frontcontroller.plugins.action = "SF_Plugin_Action"

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[310]

We have now successfully eliminated a dispatch loop from the dispatch process.
It is always important to think about the cost of dispatching when creating an
application. However, the dispatching process is earmarked for some performance
optimizations in the 2.0 release of the Zend Framework.

Caching
Now that we have looked at the general aspects of Zend Framework performance
optimization, we are going to move on and look at caching. Caching comes in many
forms, and there are a variety of tools and techniques that we can employ to add
caching at various levels within our application. For the Storefront, we are going to
look at caching data produced by our Models. This is one of the many ways to cache
data in our application and should give us enough knowledge of Zend_Cache to
apply it in other areas.

Before we start, let's first look at some of the options available to us when thinking
about implementing caching in general. Basically, there are four types of caching:

Full page caching: This caches the full output of the page. It can be achieved
using Zend_Cache by caching the returned Response Object or creating static
files (.html) that are served instead of going through the MVC process.
There are also many non-PHP tools that can enable full page caching, such as
Zend Server (http://www.zend.com/en/products/server/), which can be
used to cache pages without doing any code changes to your application.
Partial page caching: This caches part of the page output. We can again use
Zend_Cache, but this time we would only cache parts of the Response Object
in order to cache only small parts of the page's final output. This would
normally happen at the application level inside our Action Controllers.
Data caching: This caches the data. This is what we are going to implement
for our Models. As Models represent data in the MVC triad, we will be
caching at this level of the application. We add caching to the Model or
Domain layer of our application so that we can use the Models and thereby
caching outside of the MVC environment.
Client-side caching: This caches data on the user's computer. It is usually
performed by the browser and is usually more suited to a client side
programming language like JavaScript.

There are of course many other ways to cache data in an application and many
techniques to achieve the desired result. It is important to choose a caching strategy
that works for your business requirements. The strategies listed here hopefully point
you in the right direction.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[311]

Zend_Cache
Before we dive in and get started with our Model data caching, let's first get an
overview of how Zend_Cache works. As mentioned before, Zend_Cache consists of a
frontend that controls the cache and a backend that controls the cache storage. There
are various cache frontends and backends available by default in the Zend Framework.
Currently, all frontends extend the Zend_Cache_Core class, which provides generic
frontend cache functionality such as saving, tagging, and cleaning data.

The frontend types available are:

Class: Caches output for classes methods, and allows proxy calling from
cache to class
File: Caches files that are read into PHP
Function: Caches the output of a function call
Output: Caches the output using output buffering, useful for partial caching
of output
Page: Caches full page output

The backend types available are:

File
APC
Zend Server
Zend Platform
XCache
Sqlite
Memcached
TwoLevels

To use Zend_Cache, we need to configure a Zend_Cache instance like we did
previously for the Zend_Db_Table metadata cache. Here is an example of
configuring Zend_Cache and querying it for data:

$frontendOptions = array(
 'lifetime' => 1800,
 'automatic_serialization' => true
);
$backendOptions = array(
 'cache_dir'=> 'my/cache/dir'
);

•

•

•

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[312]

$cache = Zend_Cache::factory(
 'Core',
 'File',
 $frontendOptions,
 $backendOptions
);

if (!$data = $cache->load('myCachedData')) {
 $data = 'My test data that is really big';
 $cache->save($data, 'myCachedData');
}
echo $data;

Here, we have used the Core frontend and the File backend. We configure the
frontend to automatically serialize data and give it a lifetime of 1800 seconds. As the
backend is File, we have to configure the cache_dir so the backend knows where to
create its cache files.

We check if the data is in the cache using the load() method. We need to pass in the
ID of the cache, which we set when we save the data to the cache. In this case, it is
myCacheData. If the data is not in the cache or has expired, then the load() method
will return false. If this happens, we reload the data and store it in the cache using
the save() method. When saving data, we pass in the data and the ID we wish to
use in order to retrieve the data later.

We can also provide tags when saving data to the cache so that we can group cached
data, making it easy to clear parts instead of the cache when required. To tag data,
we simply provide an array of the tags as the third parameter of the save() method.

$cache->save($data, 'myCachedData', array('tag1', 'tag2'));

We can then clear the tagged parts of the cache using the clean() method.

$cache->clean(Zend_Cache::CLEANING_MODE_MATCHING_TAG, array('tag1'));

This would then remove any data that has been cached against the tag1 tag. It is
important to note that not all backends support tagging like the APC backend does.

Full documentation for the Zend_Cache API is available in the reference manual,
which covers all frontend and backend functionality.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[313]

Model data caching
Moving on from our basic example, we are now going to look at how to implement
caching in our Models. To do this, we are going to use the Class frontend and the
File backend. The Class frontend allows us to specify a class to cache. The class
methods can then be called through the cache instance and their output cached. This
is particularly useful when dealing with Models as all we want to do is cache the
output of their public methods. It means that we do not need to change the Model
too much to achieve this.

Basic class caching
An example of the basic usage of the Class cache frontend is as follows:

class myModel
{
 protected $_name = 'test';

 public function doTest()
 {
 return $this->_name;
 }
}
$frontendOptions = array(
 'cached_entity' => new myModel()
);
$cache = Zend_Cache::factory(
 'Class',
 'File',
 $frontendOptions,
 $backendOptions
);
$cache->doTest();

In this example, we have a class, myModel, and we want to cache the output of its
public methods. The myModel class is very simple and has one method doTest(),
which returns the protected class property $_name. To cache the myModel method
output, in the frontend options, we specify the cached_entity option as a new
myModel instance. This tells the frontend that we are caching this instance's methods.

Once we have configured a new Zend_Cache instance, we can then call the doTest()
method on the cache instance. This call then proxies to the myModel() instance
through the cache instance. Zend_Cache will then take care of the caching for us.
Therefore, the first time we call $cache->doTest(), the doTest() method will
actually be called. On subsequent calls, the data will be pulled from the cache instead.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[314]

As we can see, Zend_Cache makes it very easy for us to cache class methods.
What's even better is that Zend_Cache recognizes different parameters passed to
the methods. This means that $cache->doTest(1) is cached separately from
$cache->doTest(2), and we don't get the wrong data returned when the
output is based on the parameters given to the method.

Now this is all very good and we could simply place this code within our Action
Controllers and our caching would be ready. However, just like with the ACL, if we
do this, then we can only use caching in the MVC context. Therefore, we are going
to integrate the caching into our base Model class so that we have caching ability
outside of MVC.

Model cache integration
Now that we know how to cache class methods, we need to look at how to integrate
this within our Models. As we do not want to cache every method of our classes by
default, we are going to add a method to our base Model called getCached(). This
method will return a Zend_Cache instance that has been configured to cache the
methods of the Models that extend our base Model (SF_Model_Abstract).
By doing this, we are then able to call methods on our Model like this:

$sfModel->getCached()->getSomeData();

Here we first call getCached(). This then returns a SF_Model_Cache_Abstract
instance. We then call the Model method that we want to execute. This call is on the
SF_Model_Cache_Abstract instance, which will proxy to Zend_Cache and then back
to our Model just like in our previous example.

The abstract cache class
To start the implementation, let's first create an abstract cache class that will be
stored by the base Model class and which will handle all the caching functionality
for our Models:

library/SF/Model/Cache/Abstract.php

abstract class SF_Model_Cache_Abstract
{
 protected $_classMethods;
 protected $_cache;
 protected $_frontend;
 protected $_backend;
 protected $_frontendOptions = array();
 protected $_backendOptions = array();
 protected $_model;
 protected $_tagged;

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[315]

 public function __construct(SF_Model_Abstract $model, $options,
 $tagged = null)
 {
 $this->_model = $model;

 if ($options instanceof Zend_Config) {
 $options = $options->toArray();
 }

 if (is_array($options)) {
 $this->setOptions($options);
 }

 $this->setTagged($tagged);
 }

 public function setOptions(array $options)
 {
 if (null === $this->_classMethods) {
 $this->_classMethods = get_class_methods($this);
 }
 foreach ($options as $key => $value) {
 $method = 'set' . ucfirst($key);
 if (in_array($method, $this->_classMethods)) {
 $this->$method($value);
 }
 }
 return $this;
 }

 public function setCache(Zend_Cache $cache)
 {
 $this->_cache = $cache;
 }

 public function getCache()
 {
 if (null === $this->_cache) {
 $this->_cache = Zend_Cache::factory(
 $this->_frontend,
 $this->_backend,
 $this->_frontendOptions,
 $this->_backendOptions
);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[316]

 }
 return $this->_cache;
 }

 public function setFrontendOptions(array $frontend)
 {
 $this->_frontendOptions = $frontend;
 $this->_frontendOptions['cached_entity'] = $this->_model;
 }

 public function setBackendOptions(array $backend)
 {
 $this->_backendOptions = $backend;
 }

 public function setBackend($backend)
 {
 $this->_backend = $backend;
 }

 public function setFrontend($frontend)
 {
 if ('Class' != $frontend) {
 throw new SF_Model_Exception('Frontend type must be
 Class');
 }
 $this->_frontend = $frontend;
 }

 public function setTagged($tagged=null)
 {
 $this->_tagged = $tagged;

 if (null === $tagged) {
 $this->_tagged = 'default';
 }
 }

 public function __call($method, $params)
 {
 if (!is_callable(array($this->_model, $method))) {
 throw new SF_Model_Exception('Method ' . $method . ' does
 not exist in class ' . get_class($this->_model));
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[317]

 $cache = $this->getCache();
 $cache->setTagsArray(array($this->_tagged));
 $callback = array($cache, $method);
 return call_user_func_array($callback, $params);
 }
}

The main purpose of the cache abstract class is to proxy calls to the Zend_Cache
instance. It also accepts a number of options that configure the Zend_Cache instance
and handles the tagging of the cached data.

The constructor accepts three parameters, which are $model, $options, and
$tagged. These parameters set the Model to cache, the options for the cache,
and the tag to use when saving data respectively.

Most of the other SF_Model_Cache_Abstract methods are setters and getters that
configure its behavior. The setOptions() method will search the class for setters
that match the keys within the $options array passed in the constructor. For
example, if in the options we pass a key called cache, then getOptions() will call
the setCache() method. This way of setting options for a class is common in many
Zend Framework components and provides an easy way to override the default
settings in a class, making it easier to test.

The next notable method is the setFrontendOptions(). This is a simple setter for
the Zend_Cache frontend options array. However, we add in the cached_entity key
every time this is called so that the Zend_Cache instance knows to cache the Model
instance passed in with the constructor.

The final method and the most important is the __call() method. This is a magic
method defined by PHP and will capture any calls to class methods that do not exist.
This enables us to proxy calls to the class to another object. In this case we proxy
all other calls to the Zend_Cache instance. Inside the method body, we first check
that the incoming method call is available in the Model using the is_callable()
function. If the method does not exist in the class, then we throw an exception. If the
method is callable, we then set up a callback to the Zend_Cache instance and finally
call the method using the call_user_func_array() function. We also set the tag to
use on the Zend_Cache instance before we execute the callback. This will then call the
method on the Zend_Cache instance, which in turn will call the Model method or get
the data from the cache.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[318]

The concrete cache class
We will also need to create a concrete implementation of the cache abstract so that
the base Model can instantiate it.

library/SF/Model/Cache.php

class SF_Model_Cache extends SF_Model_Cache_Abstract
{}

This class simply subclasses the SF_Model_Cache_Abstract class and requires no
further modification.

Model abstract modifications
Now that we have our cache class created, we need to make it available in
our Models and add the getCached() method. In order to do this, edit the
SF_Model_Abstract class, and add the following methods:

library/SF/Model/Abstract.php

public function setCache(SF_Model_Cache_Abstract $cache)
{
 $this->_cache = $cache;
}

public function setCacheOptions(array $options)
{
 $this->_cacheOptions = $options;
}

public function getCacheOptions()
{
 if (empty($this->_cacheOptions)) {
 $frontendOptions = array(
 'lifetime' => 1800,
 'automatic_serialization' => true
);
 $backendOptions = array(
 'cache_dir'=> APPLICATION_PATH . '/../data/cache/db'
);
 $this->_cacheOptions = array(
 'frontend' => 'Class',
 'backend' => 'File',
 'frontendOptions' => $frontendOptions,
 'backendOptions' => $backendOptions
);

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[319]

 }
 return $this->_cacheOptions;
}

public function getCached($tagged = null)
{
 if (null === $this->_cache) {
 $this->_cache = new SF_Model_Cache(
 $this,
 $this->getCacheOptions()
);
 }
 $this->_cache->setTagged($tagged);
 return $this->_cache;
}

To the base Model class we have added two new setters, setCache() and
setCacheOptions() so that we can override the default cache behavior during
testing or for Models that need different settings. We then have two getters,
getCacheOptions() and getCached(). The getCacheOptions() method sets up
the default cache options for us if we have not already set any. We have decided to
hardcode these settings; however, we could easily pull this from a configuration file
if needed. The getCached() method is what we will call to get cached results from
the Model. It accepts one optional parameter, $tagged, which should be a string that
defines the tag in which the result should be stored against. Within the method body,
we create a new SF_Model_Cache instance, passing in the Model to cache $this and
the cache options. We also set the tag to use and then finally return the cache instance.

All of our Models are now able to access the caching functionality, and we can now
start to add caching to our application.

Caching the product listing
With the new additions to our Model ready, we can now start to use them within our
Action Controllers when we want cached data. To demonstrate, let's optimize the
main product listing and eliminate some of those database calls.

application/modules/storefront/controllers/catalogController.php

public function indexAction()
 {
 $products = $this->_catalogModel->getCached('product')
 ->getProductsByCategory(
 $this->_getParam('categoryIdent', 0),
 $this->_getParam('page', 1),

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[320]

 array('name')
);

 $category = $this->_catalogModel->getCached('category')
 ->getCategoryByIdent($this->_getParam('categoryIdent', ''));
 if (null === $category) {
 throw new SF_Exception_404('Unknown category ' . $this
 ->_getParam('categoryIdent'));
 }

 $subs = $this->_catalogModel->getCached('category')
 ->getCategoriesByParentId($category->categoryId);
 $this->getBreadcrumb($category);

 $this->view->assign(array(
 'category' => $category,
 'subCategories' => $subs,
 'products' => $products
)
);
 }

Here we have simply replaced all the calls to the catalog Model with calls that go
through the getCached() method. By doing this, the data returned is now cached.
For example, to get the products for the category we call:

$this->_catalogModel->getCached('product')->getProductsByCategory(
 $this->_getParam('categoryIdent', 0),
 $this->_getParam('page', 1),
 array('name')
);

Notice that we also provide the string 'product' when calling the getCached()
method. This specifies the tag under which the data for this method should be
stored. We do this so that when we save data, we can easily clear the relevant
part of the cache.

Saving new data
Currently, if we save the new cached data, then it will not appear until the cache
expires. To get around this, we need to edit our Catalog Model so that it clears
the cache every time new data is saved.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 11

[321]

To do this, edit the application/modules/storefront/models/Catalog.php file
and replace this line:

return $this->getResource('Product')->saveRow($data);

With this:

$primary = $this->getResource('Product')->saveRow($data);

// clear the cache
$this->getCached()
 ->getCache()
 ->clean(Zend_Cache::CLEANING_MODE_MATCHING_ANY_TAG,
 array('product')
);

return $primary;

This modification to the Catalog Model will clear the cache every time we save
a new Product. To clear the cache, we first get the SF_Model_Cache instance
(getCached()), then we get the Zend_Cache instance (getCache()), and finally call
the clean() method on the Zend_Cache instance. When cleaning the cache, we also
supply the tag to the cache segment that we want to clear. In this case, we want to
clear the product segment.

Fixing Zend_Db_Table_Row exceptions
To complete the Model caching, we need to fix one problem with our
implementation where the cache will sometimes store our row objects. When it does,
it will serialize them using serialize(). When our row objects are un-serialized,
they will become disconnected from the database table and will throw exceptions
when we try to use them. To get around this, we need to modify our base row
class to automatically reconnect the rows to the table when they are reinstated.

library/SF/Model/Resource/Db/Table/Row/Abstract.php

public function __wakeup()
{
 if (!$this->getRow()->isConnected()) {
 $tableClass = $this->getRow()->getTableClass();
 $table = new $tableClass();
 $this->getRow()->setTable($table);
 }
}

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Storefront Optimization

[322]

The __wakeup method will be called every time the row class is un-serialized. Within
the method, we check whether the row is indeed disconnected from the table. If
it is, then we get the table class name from the row instance and then instantiate a
new table instance. Once we have a new instance of the correct table class, we then
reconnect the row to the table using the setTable() method.

Summary
In this chapter, we have looked at all the general techniques we can use to optimize
a Zend Framework based application, from PHP optimizations such as opcode
caching all the way to caching data in our Models. It is important to remember
though that over-optimization can waste development time. We should only
optimize the parts that we really need to and try to avoid micro-optimization.
This comes down to a balance between the need for optimization and the speed
of development. Micro-optimization may shave a few milliseconds off a request
but if you spend a week doing this optimization, you have already lost your gain
in performance.

This is also true for some of the benchmark tests you may see against the Zend
Framework. While these may be true to an extent, the real performance you gain
with the Zend Framework is the speed of development and easy-to-maintain MVC
architecture. If you are looking for total performance, then use scripts instead of Object
Oriented Programming, and take a hit on the maintainability of your application.

We should also be aware that this chapter covers a very small part of data
caching. We have only looked in detail at the caching of Model data. This may
not be appropriate for every application, so it is important to consider your options
when choosing a caching strategy. You might require full page caching or even
a totally separate cache using a third party piece of software. The choice is very
application-specific and something that you will need to decide for yourself.

In the next chapter, we are going to start testing the Storefront using Zend_Test and
PHPUnit. These tools allow us to easily test the functionality of our application.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront
When developing an application before we deploy it, we need to confirm that it is
functioning as expected. In the past, this may have been a case of manually testing each
page/function of the application once we have completed development. However, this
manual testing can be very time consuming and is hard to repeat multiple times. To
help with this, we are going to look at ways in which we can automate this process
and the tools that the Zend Framework provides for this purpose.

In this chapter, we are going to:

Know what is testing
Set up the PHPUnit and Zend_Test
Write tests
Test the Customer Controller

What is testing?
Testing comes in many forms, and the type of testing we use depends heavily on the
type of project that we are working on. We can test software in various ways from
manually verifying behavior all the way to automated test suites that can be run at
will by the developers or stakeholders. The main categories for tests are as follows:

Unit testing: Unit testing happens at the class or low level, where we isolate
a single unit of code from the rest of the system to perform the test. You will
notice that we have included unit tests for the main Storefront units within
the examples in most of the chapters of this book.
Integration testing: Integration testing happens again at a low level.
However, it tests the behavior of interacting units and not just one single
unit of code.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[324]

Functional/system testing: Functional or system testing happens at a much
higher level. Here we test the behavior of the system as a whole, involving
all the units of code that make up the system. We will be using this type
of testing when using Zend_Test, as we will be testing the Storefronts
functionality at a high level.
Acceptance testing: Acceptance testing happens also at a high level. This
type of testing usually happens at the end of a project or development sprint,
where the stakeholders confirm that the system works in the way they expect
it to and that they accept its behavior.

This list of testing categories is not complete as there are probably more types of
testing than we could possibly cover. However, they do mark out the general types
of testing that are available to us. On the most basic level, all of these test types do
the same thing, that is, they confirm that something works as expected. This is the
heart of what testing is.

For the Storefront, we are going to be looking at functional testing. Therefore, we are
going to be testing the system as a whole with all elements fully integrated with each
other for the tests. For these tests, we aim to create a test suite that can be executed
with the least amount of effort. By doing this, we encourage developers to run them
as often as possible and hopefully pick up more bugs. Now functional tests do run
slower than unit tests as they involve a lot more units of code and usually a database
connection. This is why we create a unit test suite as well as a functional test suite.
This allows developers to run the unit tests very frequently and functional tests
less frequently.

You may have noticed that we already have unit tests created for the example files
supplied with most of the chapters. We will not be covering those in this book.
However, they still provide an example of unit testing and help make sure that the
example files function as expected.

PHPUnit and Zend_Test setup
As with the unit tests, we are going to be using PHPUnit to create the functional tests
for the Storefront, so our first step is to create a test suite that will house all of our
tests. Inside the Storefront project, we already have one test suite for the unit tests.
We could add our functional tests into this suite. However, we want them separated
so that we can run them independently of each other. Again this goes back to the
speed of the tests, as we want our unit tests to run as fast as possible!

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[325]

PHPUnit setup
To start, we need to create an AllTests.php file that will act as the main endpoint
for the PHPUnit test runner.

tests/application/AllTests.php

<?php
if (!defined('PHPUnit_MAIN_METHOD')) {
 define('PHPUnit_MAIN_METHOD', 'SF_Application_AllTests::main');
}

require_once dirname(__FILE__) . '/TestHelper.php';
require_once 'controllers/indexControllerTest.php';

 class SF_Application_AllTests
 {
 public static function main()
 {
 PHPUnit_TextUI_TestRunner::run(self::suite());
 }

 public static function suite()
 {
 $suite = new PHPUnit_Framework_TestSuite(
 'Storefront Application Tests'
);
 $suite->addTestSuite('IndexControllerTest');
 return $suite;
 }
}

if (PHPUnit_MAIN_METHOD == 'SF_Application_AllTests::main') {
 SF_Unit_AllTests::main();
}

The AllTests.php file contains some PHPUnit specific code that is used to configure
a test suite. It also contains the main SF_Application_AllTests class, which loads
and runs the individual tests that we will create later.

To tell PHPUnit which class and method to use when running the tests, we have
two IF statements at the top and bottom of the file. The first one defines the
PHPUnit_MAIN_METHOD constant which defines the method that should be called
for this suite, and the second checks for the constant and runs the suite.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[326]

Inside the class, we have two methods:

main(): This method calls the PHPUnit_TextUI_TestRunner::run method
passing in the returned value of the suite() method.
suite(): This method creates a new PHPUnit_Framework_TestSuite
instance defining the name of the test suite. Once the suite is created, we can
then add our tests using the addTestSuite() method.

Currently the Storefront Application Tests suite only has one test
IndexControllerTest, which will test the Index Controller.

Next, we need to create a Test Helper for our suite. This will be used to set up some
common settings that will be used by all the tests.

tests/application/TestHelper.php

<?php
require_once 'PHPUnit/Framework.php';
require_once 'PHPUnit/Framework/IncompleteTestError.php';
require_once 'PHPUnit/Framework/TestCase.php';
require_once 'PHPUnit/Framework/TestSuite.php';
require_once 'PHPUnit/Runner/Version.php';
require_once 'PHPUnit/TextUI/TestRunner.php';
require_once 'PHPUnit/Util/Filter.php';

error_reporting(E_ALL | E_STRICT);
date_default_timezone_set('Europe/London');

$root = realpath(dirname(__FILE__) . '/../../');
$paths = array(
 get_include_path(),
 "$root/library",
 "$root/tests",
 "$root/application"
);
set_include_path(implode(PATH_SEPARATOR, $paths));

defined('APPLICATION_PATH')
 or define('APPLICATION_PATH', realpath(dirname(__FILE__)
 . '/../../application'));

require_once 'ControllerTestCase.php';

Zend_Session::$_unitTestEnabled = true;
Zend_Session::start();

PHPUnit_Util_Filter::addDirectoryToFilter("$root/tests");
PHPUnit_Util_Filter::addDirectoryToFilter("$root/library/Zend");

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[327]

Our test helper first includes some of the PHPUnit classes that are required to run the
suites, then we set the error_reporting level and the default time zone. These will
be set in the bootstrap. However, it is always a good practice to include them anyway.
Next, we set up the include paths by adding the library, tests, and application folders.
We also set the APPLICATION_PATH constant to the application folder.

With all the main configuration options created, we then include the
ControllerTestCase.php class file. This class will act as a base class for all of our
tests and will contain some common setup methods that each of our tests will use.
Next, we configure Zend_Session to run in its unit test state by setting the
$_unitTestEnabled property to true. This setting stops common errors when
testing with Zend_Session.

For our final piece of code, we will add some PHPUnit filters to the PHPUnit test
runner. This is so that the code coverage reports do not include the directories we
specify. Therefore, we are effectively blacklisting the classes in these directories from
being included in the PHPUnit statistics.

Zend_Test setup
Now that we have our test helper and our main test suite, we need to create a base
class from where all our individual tests will extend from. This is not absolutely
necessary, but it saves a lot of time when creating our tests, as it provides a place for
all our common test code to live.

tests/application/ControllerTestCase.php

<?php
require_once 'Zend/Application.php';
require_once 'Zend/Test/PHPUnit/ControllerTestCase.php';

class ControllerTestCase extends Zend_Test_PHPUnit_ControllerTestCase
{
 public $application;

 public function setUp()
 {
 $this->application = new Zend_Application(
 'test',
 APPLICATION_PATH . '/config/store.ini'
);

 $this->bootstrap = array($this, 'appBootstrap');
 parent::setUp();
 }

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[328]

 public function tearDown()
 {
 $this->resetRequest()->resetResponse();
 $this->request->setPost(array());
 $this->request->setQuery(array());
 }

 public function appBootstrap()
 {
 $this->application->bootstrap();
 }
}

The ControllerTestCase subclasses Zend_Test_PHPUnit_ControllerTestCase.
This provides all the functionality required to test our application's controller
actions. This in turn subclasses the PHPUnit test case class that defines the PHPUnit
API. Our new base test case will be used to set up the test environment for each of
our tests. If we did not use a custom base test class, then we would need to include
the above code in each of our tests.

The test case class defines two special methods that are part of the PHPUnit
API—setUp() and teardown(). These methods are called between every test,
so when a test starts, the setUp() method is called, and when a test finishes the
tearDown() method is called. This provides us with a way to reset our environment
before running each test. This is very important as we need to be sure that the
environment is exactly the same for each test. If it changes each time, then we
cannot confirm the behavior accurately.

The setUp() method needs to configure our environment. For Zend_Test to work,
we need to provide a bootstrap method that configures the application just like in
our normal application setup. Therefore, we use Zend_Application to provide the
bootstrapping for us. We instantiate a new Zend_Application instance by passing in
the environment of test and the path to the store.ini configuration file. This will
make Zend_Application configure the application for the test environment. This
is currently the same as the production environment but may not always be the case.
Zend_Test is not tied to using Zend_Application so we need to provide it with
a callback to our bootstrapping method or instance method. To do this, we simply
set the callback array on the bootstrap class property. The callback we provide in
this case is array($this, 'appBootstrap'). This will make Zend_Test call the
appBootstrap() method on the current instance of the test case. The final call in the
setUp() method is to parent::setUp(). This is very important as we need to call
the setUp() methods in the parent classes for everything to work properly.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[329]

The tearDown() method is used to reset our environment. Here we tell
Zend_Test to first clear the Request and Response objects, and then we clear
the Post and Query arrays. This will stop any unexpected results caused by
adding a test's data to these objects.

Our final method is appBootstrap(). This is the callback target we specified in
setUp() and simply calls the bootstrap() on the Zend_Application instance we
created earlier. Now this executes the full bootstrap. There may be times when we
have certain parts of the bootstrap we do not want to call. If this is the case, then
we need to bootstrap the individual bootstrap resources. For example, we may only
need database and routes. Therefore, we could only bootstrap these using:

public function appBootstrap()
{
 $this->application->bootstrap('db')->bootstrap('routes');
}

Handling the database
One other important aspect of the test environment setup is the database. We need
a database to test against and ideally it needs to be in the same state to start with
for each test. The way we do this depends greatly on what type of database we use.
If we are using something like SQLite, then we can easily load the database into
memory for each test. However, with something like MySQL, this is harder
to achieve.

For the Storefront, we are going to simply import the database and data into a test
schema before we run the tests. To do this, run the following commands:

mysql -uroot -p storefront_test < structure.sql
mysql -uroot -p storefront_test < data.sql

We then need to edit the store.ini and change the database schema for the
test environment.

[test : bootstrap]
resources.db.params.dbname = "storefront_test"

Here, we simply override the default schema with the test, so that our tests do not
use the live database.

Setting up the test database in this way is not ideal, as we need to do this every
time before we run the tests. For the Storefront, as we have a small database, this is
not such a big deal. However, for more complex databases, it would become very
tiresome. Also, what we really need to achieve is the database to reset before each
test, and not the whole test suite. Therefore, ideally we would reload the database in
the setUp() method.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[330]

The way we achieve this is beyond the scope of this book as it is very project and
database dependent and would either involve third party libraries or the creation of
scripts that reload the database and data for each test. PHPUnit supports database
fixtures, though it can be hard to get it to work with Zend_Test. The doctrine project
(www.doctrine-project.org), a database Object Relational Mapper, supports both
database migrations (tracking database changes) and fixtures. This is a very good tool.

Writing tests
Okay, now that we have everything set up it is time for the fun part, which is writing
our tests. To start, create the following test class:

tests/application/controllers/indexControllerTest.php

<?php
class IndexControllerTest extends ControllerTestCase
{
 public function testIndexAction() {
 $this->dispatch('/');
 $this->assertController('index');
 $this->assertAction('index');
 $this->assertModule('storefront');
 }
}

This is the most basic test we can write. We create a class called
IndexControllerTest that subclasses our ControllerTestCase and adds a single
method testIndexAction(). The testIndexAction() method is our test. By
prefixing the method name with test, we tell PHPUnit that this is a test within the
IndexControllerTest case or suite. We can add as many tests as we want to a test
suite by adding more test methods.

Inside the IndexAction test, we have our test code. Every test that we create needs
to make some sort of assertion. By this we mean a test needs to verify some behavior.
The IndexAction test makes three assertions:

The Controller should be index
The Action should be index
The Module should be index

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[331]

So this is the behavior that we are confirming with the test. However, to make the
assertion, we need to make our application do something. We do this by using the
dispatch() method. This is part of the Zend_Test API and will make the Front
Controller dispatch to the URL we specify. In this case, we dispatch to the root of the
application (/). When we call the dispatch() method, Zend_Test does not use a
browser to make the request. Instead, Zend_Test does everything using PHP. This is
a great feature of the Zend Framework as previously we would have had to launch a
browser to do this kind of testing.

Now the assertions we make are all provided by Zend_Test and PHPUnit. Both
provide a whole host of different assertion methods for us to work with. We will
be covering a lot here but it is worth checking the documentation for both. In our
test, we use three different assertion methods, namely, assertController(),
assertAction(), and assertModule(). All of these are actually provided by
Zend_Test and confirm the Controller, the Action, and the Module called
respectively. Every assertion either fails or succeeds. So in our test, if we dispatch
to /catalog/hats instead of /, the test will fail as the assertions are not met.

Running tests
Now that we have our first test created, we need to run it. The simplest way to do
this is from the command line change into the tests/application directory, and run
the following command:

phpunit AllTests.php

This will now run the test suite for us and show the result. It should look something
like the following screenshot:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[332]

Here we can see that the tests passed and that we ran one test with three assertions.
If we now edit our test and change the dispatch() from / to /catalog/hats/ and
re-run the test suite, then our tests will fail and output something like this:

Here we can see that our test has now failed. The output tells us which test has failed
and in which suite. It also tells us why the assertion has failed.

Adding tests to the build
Running our tests like this can be a little tiresome. Therefore, we can add this to the
Ant build so it is easier to run, and we can provide some extra options.

To do this, add the following to the build.xml file:

build/build.xml

<target name="testapp" depends="getProps">
 <exec dir="${basedir}/tests/application"
 executable="phpunit${script-suffix}" failonerror="true">
 <arg line="--colors --report ${basedir}/build/report
 --log-xml ${basedir}/build/logs/phpunit.xml
 --log-pmd ${basedir}/build/logs/phpunit.pmd.xml
 --log-metrics ${basedir}/build/logs/phpunit.metrics.xml
 --coverage-xml ${basedir}/build/logs/phpunit.coverage.xml
 AllTests.php"/>
 </exec>
 </target>

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[333]

This new build target simply runs the same command we ran earlier. However, we
pass in more options this time. These new options will produce code coverage and
metrics for our project.

Now, if we change into the build directory and run the following command:

ant testapp

Ant will run the tests for us with all the extra options we need, saving us a lot of
typing! The output will now look like this:

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[334]

Again our test fails, as we haven't fixed the indexControllerTest. You may want
to change that back now for later. We also see that once the tests are complete,
PHPUnit writes code coverage XML, metrics XML, violations XML, and generates a
code coverage report. The XML files are not of any use to us. However, they can be
used by other programs such as phpundercontrol to provide us with more detailed
reports. We won't cover that here as it's far beyond the scope of this book. We leave
them in here for good practice. Now, the coverage report is of use to us. This is an
HTML report of the code lines that were executed during the test. If we open the
index.html file within the build/report folder, then we can browse to see what
was executed.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[335]

Here is an example of one of the pages outputted by PHPUnit. It shows us a table
with all the statistics for what has been executed, as well as showing the source of the
file with the lines colored to indicate which ones were executed. This tool can be very
useful, as we generally want to try to get as close to 100 percent code coverage as
possible, and it shows us what we need to do to achieve this.

Testing the Customer Controller
We are now ready to start writing some more tests. In this section, we are going
to test the Customer Controller. In these tests, we are going to confirm the
following behaviors:

Registered users should be able to log in
Invalid login credentials should not allow the user to log in
When logged in, a user should have access to their profile
Admin users can access the admin area
Non-Admin users cannot access the admin area

To start, we are going to create our test class and a helper method that logs a user
into the Storefront, which will save us from repeating the login code in each test:

tests/application/controllers/customerControllerTest.php

<?php
class CustomerControllerTest extends ControllerTestCase
{
 public function login($email, $passwd)
 {
 $this->request->setMethod('POST')
 ->setPost(array(
 'email' => $email,
 'passwd' => $passwd,
));
 $this->dispatch('/customer/authenticate');
 $this->assertRedirectTo('/customer');
 $this->teardown();
 }
}

•

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[336]

We have now created our basic structure for our test case. The login() helper
method will be used by the test methods to authenticate with the Storefront. Inside
the method body, we configure the request object. We set the request method to
POST and add a new post array containing the email and passwd fields that are
required for authentication. Once we have the request object configured, we then
tell Zend_Test to dispatch to /customer/authenticate. This will execute the
authentication process on the Storefront, just as if we had submitted the login
form manually. We then make an assertion that the application will redirect us to
/customer if the login is successful using the assertRedirect() method. Our final
call is to the tearDown() method which will reset the test for us, clearing all the
request data.

If we run this test case now, nothing would happen. This is because we have not yet
added any test methods. Therefore, we need to now add our tests. We will start by
adding a test to make sure a valid user can log in.

public function testUserCanAuthenticate()
{
 $this->login('me@me.com','123456');
}

For the testUserCanAuthenticate test, we simply call the login helper method,
passing in a valid login for the Storefront. This will be enough to confirm our
intended behavior as the login() method contains an assertion already.

Next, let's make sure invalid users cannot log in to the system. For this, add the
following test method:

public function testFailedLogin()
{
 $this->request->setMethod('POST')
 ->setPost(array(
 'email' => 'me@me.com',
 'passwd' => 'asdasdasdasdasd',
));
 $this->dispatch('/customer/authenticate');
 $this->assertQueryContentContains(
 '.error', 'Login failed, please try again.'
);
}

For the testFailedLogin test we do not use the login() method, as this
expects a valid login. Instead, this time we manually configure the request,
passing in an incorrect password and dispatching to /customer/authenticate.
This will cause the login to fail and the login form to be displayed, showing the
error to the user. We therefore need to confirm this behavior. To do this, we use the

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[337]

assertQueryContentContains() assertion. This assertion uses Zend_Dom and can
be used to search an HTML document using CSS3 style selectors. In this case, we
search the contents of all elements that have the CSS class error for the value Login
failed, please try again.

The assertQueryContentContains assertion supports all the main CSS3 selectors.
Here are some example queries:

input: selects all input elements
input[type=text]: selects all input elements with the text type attribute
#myelement: selects the element with the ID attribute of myelement
div > h1: selects all h1 elements that are descendents of a div

As we can see, this is a powerful and simple way to query the HTML content of our
application. Moreover, most web developers are already familiar with this type of
selector. If you are not familiar with CSS, then there are plenty of CSS selector tutorials
on the net and more examples in the Zend_Dom page in the reference manual.

Our next test will confirm that once a user has logged in, their profile is displayed,
which they can update using the form on that page.

public function testUserHasProfileAccessWhenLoggedIn()
{
 $this->login('me@me.com','123456');
 $this->dispatch('/customer');
 $this->assertQuery('form');
 $this->assertXpath('/html/body/div[2]/div[2]/form');
}

To see our profile, we need to log in first. Therefore, we use the login() helper
method to log in before we continue with the rest of the test. Once we have
successfully logged in, we then dispatch to /customer. This is where the customer's
profile is located. The first assertion we make is using assertQuery('form'). This
confirms that there is a form on the page and uses CSS selectors like before. Our
second assertion actually makes the same assertion as the first but using a different
query method, Xpath. The assertXpath() and assertXpathContentContains()
work in exactly the same way as the Query assertions, using Xpath as the query
language. Here we have a choice to use whichever we are most familiar with.

•

•

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Testing the Storefront

[338]

Our final two tests test the security on the administration area. These probably
would be best suited in a different test case as they are not strictly associated with
customers. However, they serve as good examples for now.

public function testAdminAreaRoute()
{
 //authenticate admin user
 $this->login('me@me.com','123456');
 $this->dispatch('/admin');
 $this->assertRoute('admin');
}

public function testUnauthenticatedUserCannotAccessAdmin()
{
 $this->dispatch('/admin');
 $this->assertQueryContentContains('p','Access Denied');
}

The testAdminAreaRoute test confirms that an authenticated user can access the
administration area. We first log in using the login helper and then dispatch to
/admin. To check that the user has the correct access, we assert that the current
route being used is the admin route, using the assertRoute() assertion.

The testUnauthenticatedUserCannotAccessAdmin test simply dispatches to
/admin without first logging in. This should give an access denied error to the user.
We confirm this by using the assertQueryContentContains() and searching the
content of all p tags for Access Denied.

Running the Customer Controller test
To run the Customer Controller test case, we need to add the test to the test suite.
Edit the AllTests.php file, and add the following highlighted lines:

require_once 'controllers/indexControllerTest.php';
require_once 'controllers/customerControllerTest.php';

$suite->addTestSuite('IndexControllerTest');
$suite->addTestSuite('CustomerControllerTest');

Now, we can run the tests just like before using Ant.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Chapter 12

[339]

Common problems
Sometimes, when writing tests, we will face situations where we need to debug
failing tests. This can be hard but there are a few little tips that we should be
aware of:

1. Make sure all _forward() and redirects calls within Controllers return. For
example:
public function indexAction()
{

 return $this->_forward('myAction');
 }

2. Never use $_POST, $_GET, $_SESSION globals. Instead, always use the
Request object.

3. Never use header() to do redirects. Use the redirector Action Helper or use
the Response object for other headers.

4. Never output anything in your Controllers. Always use the Response object.
5. To debug errors, use var_dump() to view the contents of the Request and

Response objects. If dumping the full objects produces too much data, then
you can access specific parts. For example:
var_dump($this->request->getPost());
var_dump($this->response->getException());

Summary
In our final chapter, we have looked at how we can test the Storefront to confirm
that it is functioning as expected, by using functional testing. We have also looked
at the different types of testing available to us such as unit testing and acceptance
testing. We have created a test suite using PHPUnit and Zend_Test that can be easily
executed through Apache Ant and is repeatable. For individual tests, we have looked
at the API provided by Zend_Test that allows us to make assertions based on the
output of the application to confirm specific behaviors.

This is the final chapter, so I hope that you have found this book a useful resource
and that it has shown you how flexible and powerful the Zend Framework is. I have
certainly enjoyed putting this book together and would highly recommend the Zend
Framework to anyone—and I see it growing further in the future.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Supporting
Software

In the book we use various supporting software tools to help work with the Zend
Framework, these tools help us maintain, test, and debug our applications. In this
chapter, we look at how to install these tools on various platforms.

Installing PHPUnit
The book's examples use PHPUnit for testing. You will need PHPUnit installed to
run these tests. PHPUnit can be installed using PHP's PEAR interface and using the
following commands:

pear channel-discover pear.phpunit.de

pear install –-alldeps phpunit/PHPUnit

Running this command will automatically install PHPUnit for you. The version used
in the book is 3.3.6 although later 3.x versions should also work. You can find more
information about PHPUnit at http://www.phpunit.de.

To test your installation, you should be able to run the tests included in one of the
example packages using:

cd tests

phpunit AllTests.php

PHP memory limit
You may need to increase the memory limit of PHP to install PHPUnit
and run the tests. This can be done by editing the php.ini and changing
the memory_limit directive. Typically, I use between 64M and 128M.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Supporting Software

[342]

Installing Xdebug
Xdebug is a PHP extension that helps with the debugging of PHP applications.
The reason we use it in the book examples is mainly for its code coverage analysis,
which is used by PHPUnit to produce various metrics for us. If you have not already
come across Xdebug, then I would strongly advise installing it, as it has many great
features for debugging and profiling your applications.

The installation of Xdebug can be a bit troublesome sometimes, especially on
Windows systems, as you need to compile the extension.

Windows installation
Luckily for Windows, there are precompiled Xdebug modules available on
the Xdebug home page at http://www.xdebug.org. If you are on Windows,
I suggest downloading the correct dll for your PHP version and dropping it in
your extensions directory.

Linux based installation
On any Linux system, the compilation of the extension can be done through the
PECL interface. To install, run the following from your shell:

pecl install Xdebug

Hopefully, this will download, compile, and install the extension for you. If not, then
you may need to download it and compile it manually. For more information on
compiling Xdebug, go to http://www.xdebug.org/docs/install.

OSX Installation
OSX installation can be somewhat troublesome; if you are using the Macports
version of PHP you can easily install it using the ports command using:

sudo port install php5-xdebug

If you are using MAMP, the best way to get the Xdebug binary is to download
the precompiled one from the ActiveState website, http://aspn.activestate.
com/ASPN/Downloads/Komodo/RemoteDebugging. Select the correct PHP Remote
Debugging package for your system and then copy the xdebug.so file for your PHP
version to:

/Applications/MAMP/bin/php5/lib/php/extensions/no-debug-non-zts-
20050922/xdebug.so

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Appendix

[343]

Also, if you have fully configured PHP on your OSX system you should be able to
use the pecl command like on Linux. However, this is not possible on a default
OSX install.

Configuration
Once you have the module installed, you need to activate it in your php.ini. Edit
your php.ini and add the following at the bottom:

For Windows:

zend_extension_ts="c:/php/modules/php_xdebug-4.4.1-2.0.2.dll"

For Linux:

zend_extension="/usr/local/php/modules/xdebug.so"

Remember, you need to change the path and version numbers to match your
environment settings!

Installing Apache Ant
We use Apache Ant to automate some tasks that configure the application.
This is not essential, but I use this on all my projects and so thought to include
it as I personally find it very useful. There are other alternatives such as Phing
(http://phing.info). You can use either, but all the examples in this book have
used Ant.

To run Ant, you will need the Java Runtime installed and the Java JDK 6. It is best to
get the Sun version from http://java.sun.com/javase/downloads/index.jsp.
Once you have that installed it, you can download Ant from http://ant.apache.
org/bindownload.cgi. Get the latest version 1.6.

Windows installation
Unpack the downloaded Ant package to C:\ant.

Once the package has been extracted, we need to set some environment variable
so that we can run Ant from the command line and so that Ant knows where Java
is located.

Open: My Computer | Advanced System Properties | Environment
Variables.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Installing Supporting Software

[344]

Then add the following variables:

ANT_HOME C:\ant

JAVA_HOME C:\java\bin

You may already have the JAVA_HOME variable set. If so, then leave it as it is. Also
remember to change the JAVA_HOME path given above to match your system's Java
bin directory.

We then need to edit the PATH variable and add the path to the Ant bin directory.
We do this by adding the following to the end of the PATH string:

; C:\ant

We should now be able to open the command prompt and run the Ant command.

Linux installation
As Ant is widely used, you should be able to install it through any of the
distributions package managers such as apt-get or yum. So you should be
able to run something like:

apt-get install ant

On Linux, it is important to make sure that you are using the Sun version of Java and
that the JAVA_HOME and ANT_HOME environment variables are set. These should be set
by your package manager anyway.

•

•

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Index
Symbols
$resource null|array|string method

bootstrap abstract class 95
.htaccess 16
__call() method 142
__construct() method 225
__constuct method 247
__get() method 142
__isset() method 142
__set() method 142
_forward utility method 27
_getProductForm() method 281
_getShippingMultiOptions() method 236
_redirect utility method

about 29
arguments 29

A
acceptance testing 324
ACL

about 252
implementing, in MVC 253
unit testing 264, 265

ACL, in Domain layer
advantages 255
disadvantages 255

ACL action helper
about 283, 284
admin function, securing 286
init() hook 284
postDispatch() hook 284
preDispatch() hook 284

ACL implementation, in MVC
about 253

ACL, in Domain layer 255
centralized global ACL, using 254
Module specific ACLs, using 254

Action Controller
about 18, 19
Action Helpers 29
actions 21-24
features 18
initialization 20
standard router 24-26
subclassing 19, 20
utility methods 27

Action Helpers
about 29, 30
ActionStack 30
AjaxContext 30
AutoComplete 30
ContextSwitch 30
FlashMessenger 30
JSON 30
Redirector 30
ViewRenderer 30

action method 21
actions, Action Controller 21
Action Stack 163
Action Stack Front Controller Plugin, Cat-

egoryController 164-166
addAction(), Cart Controller 227
addControllerDirectory() method 50
addDefaultRoutes() method 56
addElementPrefixPath() method 279
addForm() method 234
add form, cart forms

about 228, 229
buy-item element 230
creating 229, 230

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[346]

elements 230
productID element 230
qty element 230
returnto element 230

addHelper() method 285
addItem() method 222
addSubForm() method 236
AdminContext plugin 270
administration area

about 267
implementation options 267, 268
pseudo module, advantages 268
pseudo module, disadvantages 268
securing 282
seperate module, advantages 268
seperate module, disadvantages 268

administration area security 282
Alpha validator 207
Apache404 Request object 71
Apache Ant

installing 343
Apache Ant installation

about 343
Linux installation 344
Windows installation 343

appBootstrap() method 329
append (string $name, string $content)

method 77
appendBody (string $content, null|string

$name = null) method 77
application directory, hellozend directory

13
application directory structure 13
application resources

loading, resource autoloader used 129-131
application stack

about 116
dependency chain 116

ArrayAccess interface 220
assemble() method 56
assertAction() method 331
assertController() method 331
assertModule() method 331
assertRedirect() method 336
assertXpath() method 337
assign() method 34
authenticateAction method 250

authenticate method 247
authentication 243
authentication, with Zend_Auth

about 244
Authentication service, creating 245, 246
Authentication Service elements 251
Authentication View Helper, creating 250
Customer Controller, adding methods to

249, 250
authentication adapters, Zend_Auth

about 244
database table authentication 244
HTTP Basic authentication 244
HTTP Digest authentication 244
InfoCard authentication 244
LDAP authentication 244
OpenID authentication 244

authentication results, Zend_Auth 244
Authentication service

__constuct method 247
adapter, configuring 247
authenticate method 247
clear method 247
creating 245, 246
getAuthAdapter method 247
getAuth method 247
getIdentity method 247
methods 247
request, authenticating 248
setAuthAdapter method 247
Zend_Auth instance, getting 247

Authentication Service elements 251
Authentication View Helper

about 250
AuthInfo Helper, using 251
creating 250, 251

AuthInfo Helper
about 251
using 251
using ways 251

authorization 243
authorization, with Zend_Acl

about 252
ACL, in MVC 253
Model based ACL 255
Non-Model ACL 263
unit testing, with ACL 264

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[347]

Zend_Acl, introducing 252
autoloader

configuring 160, 161
resources 161
resource types 161

autoloader namespaces directives 89, 90

B
base form, user forms

creating 204-206
elements 206
email element 206
firstname element 206
lastname element 206
passwd element 206
passwdVerify element 206
submit element 206
title element 206
userId element 206

base form decorators 212
bootstrap($resource = null) method 95
bootstrap() method 15
bootstrap abstract class

$resource null|array|string method 95
about 95
bootstrap($resource = null) method 95
getApplication() method 95
getClassResources() method 95
getEnvironment() method 95
getOption($key) method 95
getOptions() method 95
getPluginResource($resource) method 95
getPluginResources() method 95
hasOption($key) method 95
hasPluginResource($resource) method 95
methods 95

bootstrap class
about 94
bootstrap abstract class 95
bootstrap resource execution order 94, 95
creating 94

bootstrap class path directive 90
bootstrap file 17
bootstrapping

about 14
application, configuring 16

application configuration 16, 17
bootstrap file 17
index file, creating 14-16
ZendTool, used 14

bootstrap resource plugins
about 91
configuring 91, 92

bootstrap resources
creating 96
CSS stylesheets, adding 99
doctype setting 98
document title, setting 99
encoding 98
locale, initializing 96
metadata, adding 98
view, initializing 96
Zend_View, instantiating 97

C
caching

about 310
client-side caching 310
data caching 310
full page caching 310
Model data caching 313
partial page caching 310
types 310
Zend_Cache 311

calculateTotals() method 222
Cart() method 233
Cart _cart.phtml 237, 239
Cart Controller

actions 227
addAction() 227
creating 226
updateAction() 228
viewAction() 227

cart forms
add form 228
creating 228
SF_Form_Abstract 231
table form 230

Cart Model
ArrayAccess interface 220
class properties 221
Countable interface 220

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[348]

creating 217-220
implementing 221-223
methods 222
resources 224
SeekableIterator interface 220

Cart Model methods
addItem() 222
calculateTotals() 222
getSessionNs() 222
getShippingCost() 222
getSubTotal() 222
getTotal() 222
init() 222
loadSession() 222
persist() 222
removeItem($product) 222
setSessionNs(Zend_Session_Namespace

$ns) 222
setShippingCost($cost) 222

Cart Model resources 224, 225
cartTable() method 235
Cart view.phtml 237
Cart View Helper

about 233
addForm() method 234
Cart() method 233
cartTable() method 235
formatAmount() method 236
getSummary() method 234

Cart View scripts
about 236
Cart _cart.phtml 237
Cart view.phtml 237
Catalog index.phtml 240
Catalog view.phtml 241
Layout main.phtml 239

CatalogController 167-170
catalog controllers

CatalogController 167
CategoryController 163, 164
creating 163
storefront routes 170

Catalog index.phtml 240
catalog index.phtml script 174, 175
catalog management

about 273
products, adding 274

catalog methods
about 136
getCategoriesByParentId() 136
getCategoryByIdent() 136
getCategoryChildrenIds() 136
getParentCategories() 136
getProductById() 136
getProductByIdent() 136
getProductsByCategory() 136

catalog model
autoloader, configuring 160, 161
creating 134
implementing 143
loading 160
methods, implementing 156-160
resources 137
skeleton 134
Zend_Db_Table bug 162

catalog model ACL 286, 287
catalog model implementation

about 143
Model Resource, implementing 146
Model Resource interfaces, creating 143,

145, 146
catalog model resources

about 137, 138
Model Resource Items 140
Zend_Db_Table 138

catalog model skeleton
about 134, 135
catalog methods 136
naming conventions 135

Catalog view.phtml 241
catalog View Helper

aspects 176
best practice 176
creating 175-180
storefront View Helpers 177, 179
storefron View Helpers 178

catalog views
about 172
catalog index.phtml script 174
category views, creating 172, 173
creating 172-175

Category() method 309
CategoryController

about 163, 164

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[349]

Action Stack Front Controller Plugin 164,
166

Category Model Resource
about 147
creating 147

Category Resource Item
about 148
creating 148

category views
about 172
creating 172, 173

checkAcl() method 261
CLA 3
class properties, Cart Model 221
clear method 247
clearParams(String|Array|Null $name)

method 48
client-side caching 310
composition

about 122
advantages 123
custom row class in Zend_Db_Table, used

122
disadvantages 123
example 122
has-a relationship 122

Contributor Lincense Agreement. See CLA
control logic 18
count() method 221
Countable interface 220
createSalt() method 185
current() method 221
Customer Controller

about 190
authenticateAction method, adding 250
creating 190-192
getLoginForm method, adding 250
indexAction, using 191
loginAction method, adding 250
methods, adding 249
testing 335, 336, 338

Customer Controller test
running 338

customer views
creating 215

custom validators, user forms
about 208

password verification validator 210
unique email validator 208
using 211, 212

D
database installation

category table 106
productImage table 106
product table 105
user table 107

data caching 310
decorators, user forms

using 211, 212
deny() method 256
dependency chain, application stack

application 116
domain 116
infrastructure 116
user interface 116

direct() method 285
direct inheritance

about 120
advantages 121
disadvantages 121
example 120, 121

directives, Zend_Application configuration
autoloader namespaces 89
bootstrap class path 90
bootstrap resource plugins 91
environment specific configuration 93
PHP settings 90
using an array 92

dispatch() method 44, 70
Dispatcher

about 67
design 67
employing 69
request dispatching 67

domain, application stack 116
domain model

about 123
advantages 124
disadvantages 124

doTest() method 313

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[350]

E
environmental checking methods, HTTP

Request object
isDelete () 75
isFlashRequest () 75
isGet () 75
isHead () 75
isOptions () 75
isPost () 75
isPut () 75
isSecure () 75
isXmlHttpRequest () 75

environment specific configuration,
Zend_Application 93

error handling 38, 39
Escape() 33

F
fat controller

about 117
product controller 117
product model 117
product model, disadvantages 118

fat model
about 118
product controller 118
product model 118
product model, advantages 119

Fat Model Skinny Controller
about 117
fat controller 117
fat model 118

Fat Model Skinny Controller principle 192
fetchAll() method 148
filter() method 279
filters, user forms

using 211, 212
find() method 149
findDependentRowset() rowset method 152
firstname element

about 207
Alpha validator 207
creating 207
filters, passing 207
required option, passing 207
StringLength validator 207

StringTrim filter 207
validators, passing 207

first view
creating 30

first view, creating
URL View Helper 35
view, creating 31-33
view customization 37
view directories 31
view helpers 35

formatAmount() method 236
Form elements

about 200
decorators 200
description, decorators 200
errors, decorators 200
HtmlTag, decorators 200
label, decorators 200
ViewHelper, decorators 200

Front Controller
about 45
actions 48
controllers 48
default behavior 46
default objects 46
default plugins 47
design 45
employing 47
invocation parameters 47
methods 51
modules 48
modules, using 49-51
MVC component customization 51
options 48
plugins 52

Front Controller, methods
setDefaultAction(String $name) 51
setDefaultControllerName(String $name)

51
setDefaultModule(String $module) 51
setModuleControllerDirectoryName(String

$name) 51
Front Controller, methods for handling

invocation parameters
clearParams(String|Array|Null $name) 48
getParam(String $name) 48
getParams() 48

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[351]

setParam(String $name, Mixed $value) 48
setParams(Array $params) 48

Front Controller, methods for options
returnResponse(Boolean $flag) 48
setBaseUrl(String $base) 48
setDefaultAction(String $action) 48
setDefaultControllerName(String

$controller) 48
throwExceptions(Boolean $flag) 48

Front Controller, plugin related methods
getPlugin(String $class) 53
getPlugins() 53
hasPlugin(String $class) 53
registerPlugin(Zend_Controller_Plugin_

Abstract $plugin, Optional Int
$stackIndex) 52

unregisterPlugin(Zend_Controller_Plugin_
Abstract|string $plugin) 53

Front Controller default objects
dispactcher 46
plugin broker 46
request 46
response 46
router 46

Front Controller default plugins
Zend_Controller_Plugin_ActionStack 47
Zend_Controller_Plugin_ErrorHandler 47

Front Controller plugins
about 52
uses 53

full page caching 310
functional/system testing 324

G
general optimizations

about 301
include, optimizing 303, 304
opcode caching 301, 302
path optimizations 302, 303
require, optimizing 303, 304
standard caches 304, 305

getAcl() method 261, 285, 288
getActionName() method 72
getApplication() method 95
getAuthAdapter method 247
getAuth method 247

getCached() method 314, 319
getCacheOptions() method 319
getCategoriesByParentId() method 136, 147,

309
getCategoryById() method 148, 149
getCategoryByIdent() method 136, 148, 150
getCategoryChildrenIds() method 136
getClassResources() method 95
getControllerName() method 72
getCookie() method 74
getCurrentRoute() method 56
getCurrentRouteName() method 56
getDefaultImage() method 153
getENV() method 74
getEnvironment() method 95
getFull() method 156
getHeader() method 74
getIdentity() method 261, 285
getIdentity method 247
getImages() method 152, 153
getInstance() method 46
getInvokeArg() method 47
getLineCost() method 225
getLoginForm method 250
getModuleName() method 72
getMvcInstance() method 270
getOption($key) method 95
getOptions() method 95, 317
getParam() method 72
getParam(String $name) method 48
getParams() method 48, 72
getParentCategories() method 136
getParentCategory() method 148
getPlugin(String $class) method 53
getPluginResource($resource) method 95
getPluginResources() method 95
getPlugins() method 53
getPost() method 74
getPrice() method 153
getProductById() method 136, 149
getProductByIdent() method 136
getProductsByCategory() method 136, 150
getQuery() method 74
getRawBody() method 74
getRequest() method 71, 192
getResourceId() method 261, 288
getRoleId() method 258

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[352]

getRoute() method 56
getServer() method 74
getSessionNs() method 222
getShippingCost() method 222
getSubTotal() method 222
getSummary() method 234
getThumbnail() method 156
getTotal() method 222
getUserByEmail() method 185
getUserById() method 185
getUserForm() method 193
getUserParam() method 72
getUserParams() method 72
getUsers() method 185
getValues() method 280

using 187
gotoRoute() method 282

H
hasOption($key) method 95
hasPlugin(String $class) method 53
hasPluginResource($resource) method 95
hellozend directory

application directory 13
library directory 13
public directory 13
tests directory 13

hellozend directory structure 13
HTTP Request object

about 73
environmental checking methods 75
getCookie() 74
getENV() 74
getHeader() 74
getPost() 74
getQuery() 74
getRawBody() 74
getServer() 74
setParamSources() method 74
user parameters 73

I
identity persistence, Zend_Auth 245
IndexAction test 330
indexControllerTest 334
infrastructure, application stack 116

init() method 21, 222, 285
initialization, Action Controller 20
insert (string $name, string $content, string

$parent = null, boolean $before =
false) method 77

integration testing 323
isAllowed() method 261, 285
isDefault() method 156
isDelete () method 75
isDiscounted() method 154
isDispatched() method 72
isGet () method 75
isHead () method 75
isOptions () method 75
isPost () method 75, 192
isPut () method 75
isSecure () method 75
isTaxable() method 145
isValid() method 209
isXmlHttpRequest () method 75

K
key() method 221

L
Layout main.phtml 239
library directory, hellozend directory 13
loadSession() method 222
login() helper method 337
loginAction method 250

M
main() method 326
Model based ACL

about 255
elements 255
new base model 259
storefront ACL 256
storefront resources 258
storefront roles 257, 258
user model, securing 261, 262

Model cache integration
about 314
abstract cache class, creating 314-317
concrete cache class, creating 318

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[353]

Model abstract modifications 318, 319
new data, saving 320
product listing, caching 319, 320
Zend_Db_Table_Row exceptions, fixing

321, 322
Model data caching

about 313
basic class caching 313
Model cache integration 314

model design
about 116
application stack 116
Fat Model Skinny Controller 117
strategies 120

model design startegies
about 120
direct inheritance 120
domain Model 123
has-a relationship (composition) 122

model resource data sources, storefront
models

about 126
Data Source 126
model resource items 127
Resource Interface 126
Resource item business logic 127

Model Resource implementation
about 146
Category Model Resource, creating 147
Category Resource Item, creating 148
ProductImage Resource Item, creating

155, 156
Product Model Resource, creating 149-152
Product Resource Item, creating 152-155

Model Resource interfaces
creating 143-146

Model Resource Items
about 140, 141
creating 143
SF_Model_Resource_Db_Table_Row_Ab-

stract class 141
model resources, storefront models

about 125
managing 126

models, Zend Framework 115
Module specific ACLs

about 254

advantages 254
disadvantages 255

multiple modules
bootstrap process 292
configuring 289

multiple modules, configuring
common elements, sharing 293, 294
configure Zend_Application, configuring

290
modules, bootstrapping 290-293
module specific configuration 293
setup 289

MVC architecture
about 10
benefits 10
disadvantages 10
overview 10

MVC component customization 51
MVC components, Zend Framework MVC

about 45
abstractness 45
Dispatcher 67
Front Controller 45
Request object 70
Response object 75
router 53

myModel method 313

N
new base model 259
next() method 221
Non-Model ACL 263, 264

O
offsetExists($key) method 221
offsetGet($key) method 221
offsetSet($key, $value) method 221
offsetUnset($key) method 221
opcode 301
opcode caches

about 302
using 302

opcode caching 301

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[354]

P
partial page caching 310
password verification validator

about 210
creating 210, 211

path optimizations 302
persist() method 222
PHP optimizations 302
PHP settings, Zend_Application 90
phpundercontrol 334
PHPUnit

installing 341
PHPUnit installation 341
PHPUnit setup

about 325
main() method 326
suite() method 326

Plugin Loader 211
populate() method 191
preDispatch() method 270
preg engine 58
preg library 59
prepend (string $name, string $content)

method 77
product add form

about 275
creating 275, 276
custom filters, using 279, 280
form elements, sharing 278

ProductImage Resource Item
about 155
creating 155, 156

Product Model Resource
about 149
creating 149-152

Product Resource Item
about 152
creating 152-155

products, adding to catalog
catalog controller, editing 281
catalog model, editing 280
product add form 277
product add form, creating 275, 276

project structure
creating 11, 13

creating, Zend_Tool component used 11
public directory, hellozend directory 14

R
RedirectCommon Action Helper 285
regex matching 58
registerPlugin(Zend_Controller_Plugin_Ab-

stract $plugin, Optional Int $stackIn-
dex) method 52

registerUser() method
about 185
using 186

removeItem($product) method 222
request, Zend Framework MVC 42
request dispatching, Dispatcher 67
request handling, Zend Framework MVC

about 42, 43
process 44

Request object
about 70
Apache404 Request object 71
design 71
employing 71, 72
getActionName() 72
getControllerName() 72
getDispatched() 72
getModuleName() 72
HTTP Request object 73
methods, for accessing parameters 72
setActionName() 72
setControllerName() 72
setDispatched() 72
setModuleName() 72
Simple Request object 71

request object 26
Request object methods, for accessing

parameters
getParam() 72
getParams() 72
getUserParam() 72
getUserParams() 72
setParam() 72
setParams() 72

required option 207
reset() method 152

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[355]

resource autoloader
about 129
basepath, specifying 129
namespace, specifying 129
resource, specifying 130
using 129-131

Response Object 163
Response object

about 75
default 76
design 75, 76
employing 76-79

Response object, methods
append (string $name, string $content) 77
appendBody (string $content, null|string

$name = null) 77
 insert (string $name, string $content, string

$parent = null, boolean $before = false)
77

prepend (string $name, string $content) 77
returnResponse(Boolean $flag) method 48
rewind() method 221
router

about 53
design 54
employing 55
methods 56
routeShutdown 54
routeStartup 54
the Zend_Controller_Router_Rewrite router

54
types 55
Zend_Config 65
Zend_Controller_Router_Route 56
Zend_Controller_Router_Route_Chain 64
Zend_Controller_Router_Route_Hostname

63
Zend_Controller_Router_Route_Regex 59
Zend_Controller_Router_Route_Static 59

router, methods
addDefaultRoutes() 56
assemble() 56
getCurrentRoute() 56
getCurrentRouteName() 56
getRoute() 56
getRoutes() 56
hasRoute() 56

removeDefaultRoutes() 56
removeRoute() 56

router class 55
routeStartup event 44
Row data gateway pattern 140

S
save() method

about 185
using 187

saveProduct() method 280
saveRow() method 280
saveUser() method

about 185
using 187

security, administration area
about 282
ACL action helper 283, 284
catalog model ACL 286, 288

seek($index) method 221
SeekableIterator interface 220
select() method 147
services

about 295
creating, for Cms module 296
cross module communication 295-299
model behavior, extending 299, 300

setAcl() method 261, 288
setActionName() method 72
setAuthAdapter method 247
setBaseUrl(String $base) method 48
setBody() method 76
setCache() method 305, 317
setControllerDirectory() method 50
setControllerName() method 72
setDefaultAction(String $action) method 48
setDefaultAction(String $name) method 51
setDefaultControllerName(String

$controller) method 48
setDefaultControllerName(String $name)

method 51
setDefaultModule(String $module) method

51
setDisableLoadDefaultDecorators() method

230
setDispatched() method 72

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[356]

setEnabled() method 113
setIdentity() method 260, 285
setIncludeFileCache() method 306
setModuleControllerDirectoryName(String

$name) method 51
setModuleName() method 72
setParam() method 72
setParam(String $name, Mixed $value)

method 48
setParams() method 72
setParams(Array $params) method 48
setParamSources() method 74
setRequest() method 72
setRowCount() method 152
setSessionNs(Zend_Session_Namespace

$ns) method 222
setShippingCost($cost) method 222
setUp() method 328
SF_Exception class 131
SF_Form_Abstract class, cart forms 231, 232
SF_Model_Abstract class 132
SF_Model_Exception class 132
SF_Model_Interface class 131
SF_Model_Resource_Db_Interface class 132
SF_Model_Resource_Db_Table_Abstract

class 132
SF_Model_Resource_Db_Table_Row_Ab-

stract class
__call() method 142
__construct() method 142
__get() method 142
__isset() method 142
__set() method 142
about 132, 142
getRow() method 142
methods 142
setRow() method 142

SF_Model_Resource_Interface class 132
SF Library

about 131
SF_Exception class 131
SF_Model_Exception class 132
SF_Model_Interface class 131
SF_Model_Resource_Db_Interface class 132
SF_Model_Resource_Db_Table_Abstract

class 132

SF_Model_Resource_Db_Table_Row_Ab-
stract class 132

SF_Model_Resource_Interface class 132
SF Model_Abstract class 132

shipping model 225
Simple Request object 71
standard caches

Db table cache 306, 307
plugin loader cache 305, 306

standard router, Action Controller
about 24-26

Storefront_Model_Acl_Storefront class 256
Storefront_Resource_User_Item class 258
storefront ACL 256
storefront administration area

implementing 268
storefront administration area

implementation
about 268
Admin context front controller plugin 270
admin controller 273
admin layout 271, 272
admin route 269

storefront application
authentication vs authorization 243
basic structure 83
bootstrapping 86, 87
building 102, 104, 180
coding standards 82
functional testing 324
general optimizations 301
optimizations, dispatching 308, 309
overview 83
requisites 81, 82
running 180
software requirements 82
testing 323

storefront application, testing
database, handling 329
PHPUnit, setting up 325
Zend_Test, setting up 327, 328

storefront application structure
about 83
basic layout 100-102
directory structure 84

storefront database
about 104

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[357]

database, installing 104
Zend_Db 107

storefront models
about 125
loading 129
model resource data sources 126
model resources 125
model resources, managing 126

storefront resources 258
storefront roles 257
storefront routes 170-172
StringLength validator 207
StringTrim filter

about 207
trim() function 207

subclassing, Action Controller 19, 20
suite() method 326

T
Table Data Gateway pattern 137
table form, cart forms

about 230
creating 230, 231

tearDown() method 328
testAdminAreaRoute test 338
test environment setup

about 324
database, handling 329
PHPUnit setup 325
Zend_Test setup 327

testFailedLogin test 336
testIndexAction() method 330
testing

about 323
acceptance testing 324
categories 323
functional or system testing 324
integration testing 323
unit testing 323

tests
adding to Ant build 332-335
common issues 339
running 331, 332
writing 330, 331

tests directory, hellozend directory 14

testUnauthenticatedUserCannotAccessAd-
min test 338

testUserCanAuthenticate test 336
the Zend_Controller_Router_Rewrite router

54
throwExceptions(Boolean $flag) method 48
toArray() method 191
trim() function 207

U
unique email validator

about 208
creating 208, 210

unit testing 323
unregisterPlugin(Zend_Controller_Plugin_

Abstract|string $plugin) 53
updateAction(), Cart Controller 228
URL View Helper 35, 36
user forms

about 204
base form, creating 204-206
base form decorators 212
creating 204-206
custom validators 208
elements, base form 206
forms, specializing 213, 214

user model
createSalt() method 185
creating 183-185
getUserByEmail() method 185
getUserById() method 185
getUsers() method 185
methods 185
registerUser() method 185
resources 188
save() method 185
saveUser() method 185
securing 261
security, testing 264, 265

User Model Resources 188-190
utility methods, Action Controller

_forward utility method 27, 28
_redirect utility method 29
about 27

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[358]

V
valid() method 221
view

creating 31-33
viewAction(), Cart Controller 227
view customization 37
view directories 31
View Helpers

about 35
Action View 36
Doctype 36
HeadLink 36
HeadMeta 36
HeadScript 36
HeadStyle 36
HeadTitle 37
HTML Object 37
InlineScript 37
JSON 37
Partial 36
Placeholder 36
Translate 37
Various Form Element Helpers 37

View Scripts 31

W
where() method 151

X
Xdebug

installing 342
Xdebug installation

about 342
configuration, for Linux 343
configuration, for Windows 343
Linux based installation 342
Windows installation 342

Z
Zend_Acl

admin role, creating 252
concepts 252
introducing 252
Resource 252

Role 252
ServerRoom, creating 252
visitor role, creating 252

Zend_Application, bootstrapping with
bootstrap, completing 100
bootstrap class 94
bootstrap resources, creating 96
storefront, bootstrapping 86
Zend_Application basics 85
Zend_Application configuration 88

Zend_Application basics
about 85
basic principles 85
bootstrap class 85
bootstrap resource plugin 85

Zend_Application configuration
about 88, 89
directives 89
options 89

Zend_Auth
about 244
authentication adapters 244
authentication results 244
identity persistence 245

Zend_Cache
about 311
backend types 311
forntend cache functionality 311
frontend types 311
using 311

Zend_Config 65, 66
Zend_Controller_Front class 45
Zend_Controller_Plugin_Abstract class

method 52
Zend_Controller_Router_Route 56-59
Zend_Controller_Router_Route_Chain

64, 65
Zend_Controller_Router_Route_Hostname

63
Zend_Controller_Router_Route_Regex

59-63
Zend_Controller_Router_Route_Static 59
Zend_Db

about 107
adding, to storefront 108

Zend_Db_Table
about 138

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

[359]

basic usage 139
relationships 139, 140

Zend_Db_Table bug 162
Zend_Debug 109
Zend_Form

about 194
creating 196, 197
elements, handling 196
output, customizing 198
structure 195

Zend_Form's Decorators
about 200
display groups 202
Form 201
Form elements 200
subforms 202

Zend_Form customization
about 198
decorator pattern 198, 199
login forms HTML, fixing 202-204
Zend_Form's Decorators 200

Zend_Forms
user forms 204

Zend_Loader_Autoloader_Resource 129
Zend_Log

about 109
adding, to storefront 109-111
database, profiling 113
logger, using 111, 112

Zend_Test setup
about 327
appBootstrap() method 329
setUp() method 328
tearDown() method 328

Zend_Tool
about 11
features 12

Zend Framework
about 2
Action Controller 18
caching 310
community 4
conventions 5, 6
environment, setting up 10
features 3
flexibility 3
future developments 2
general optimizations 301
history 1
lincensing 3
models 115
optimizations, dispatching 308, 309
out of the box features 4
project structure, creating 11
quality 3
simplicity 3
source package, downloading 10
uses 2
Zend_Debug 109
Zend_Log 109

Zend Framework MVC
MVC components 45
overview 41
request 42
request handling 42

Zend Framework release package
downloading 10
installing 11

Zend Frameworks license 3

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Thank you for buying
Zend Framework 1.8
Web Application Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Zend Framework 1.8 Web Application Development, Packt
will have given some of the money received to the Zend framework project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

Symfony 1.3 Web Application
Development
ISBN: 978-1-847194-56-5 Paperback: 250 pages

Design, develop, and deploy feature-rich,
high-performance PHP web applications using the
Symfony framework

1. Create powerful web applications by
leveraging the power of this Model-View-
Controller-based framework

2. Covers all the new features of version 1.3
– many exciting plug-ins for you

3. Learn by doing without getting into too much
theoretical detail – create a “real-life” milkshake
store application

4. Includes best practices to shorten your
development time and improve performance

CakePHP Application
Development
ISBN: 978-1-847193-89-6 Paperback: 332 pages

Step-by-step introduction to rapid web development
using the open-source MVC CakePHP framework

1. Develop cutting-edge Web 2.0 applications,
and write PHP code in a faster, more
productive way

2. Walk through the creation of a complete
CakePHP Web application

3. Customize the look and feel of applications
using CakePHP layouts and views

4. Make interactive applications using CakePHP,
JavaScript, and AJAX helpers

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Vadim Kudria on 4th October 2009

6352 108th St, , Forest Hills, , 11375

	Zend Framework 1.8 Web Application Development
	Table of Contents
	Preface
	Chapter 1: Creating a Basic MVC Application
	Overview of MVC architecture
	Setting up the environment
	Installation
	Creating the project structure
	Application directory structure
	Bootstrapping
	The index file
	Application configuration
	The bootstrap file

	Your first controller
	The Action Controller
	Subclassing
	Initialization
	Actions
	The standard router
	Utility methods
	Action Helpers

	Your first view
	View directories
	Creating a view
	View Helpers
	URL View Helper

	View customization

	Handling errors
	Summary

	Chapter 2: The Zend Framework MVC Architecture
	Zend framework MVC overview
	What is a request
	Request handling
	Abstractness of MVC components

	The Front Controller
	Design
	Defaults
	Using the Front Controller
	Invocation parameters
	Options
	Modules, controllers, and actions
	MVC component customization
	Plugins

	The router
	Design
	Defaults
	Using the router
	Zend_Controller_Router_Route
	Zend_Controller_Router_Route_Static
	Zend_Controller_Router_Route_Regex
	Zend_Controller_Router_Route_Hostname
	Zend_Controller_Router_Route_Chain
	Zend_Config

	The Dispatcher
	Design
	Request dispatching
	Using the Dispatcher

	The Request object
	Design
	Defaults
	Using the Request object
	The HTTP Request object

	The Response object
	Design
	Defaults
	Using the Response object

	Summary

	Chapter 3: Storefront Basic Setup
	Getting started
	Software requirements
	Coding standards

	The Storefront requirements
	The Storefront overview
	Basic structure and setup
	The directory structure
	Bootstrapping with Zend_Application
	Zend_Application basics
	Bootstrapping the storefront
	Zend_Application configuration
	The bootstrap class
	Creating the bootstrap resources
	Bootstrapping complete

	The basic layout
	A little task for you

	Building the Storefront
	The Storefront database
	Database installation
	Product table
	ProductImage table
	Category table
	The user table

	Introducing Zend_Db
	Adding Zend_Db to the Storefront

	Logging and debugging
	Zend_Debug
	Zend_Log
	Adding Zend_Log to the Storefront
	Using the logger
	Database profiling with Zend_Log

	Summary

	Chapter 4: Storefront Models
	Models in the Zend Framework
	Model design
	The application stack
	Fat Model Skinny Controller
	Fat Controller
	Fat Model

	Model design strategies
	Direct inheritance
	Has-a relationship (composition)
	Domain Model

	Further reading

	Storefront Models
	Model Resources
	Managing Model Resources
	Model Resource data sources
	Model Resource Items
	Resource Item business logic

	Loading Models and Resources
	Zend_Loader_Autoloader_Resource
	Resource Autoloading

	The SF Library
	Summary

	Chapter 5: Implementing the Catalog
	Getting started
	Creating the Catalog Model and Resources
	Catalog model skeleton
	Naming conventions
	Catalog methods

	Catalog Model Resources
	Zend_Db_Table
	Model Resource Items

	Implementing the Catalog Model
	Model Resource interfaces
	Model Resource implementation

	Catalog Model

	Loading Models and other assets
	Configuring the Autoloader
	The Zend_Db_Table bug

	Creating the Catalog Controllers
	CategoryController
	Action Stack Front Controller Plugin

	CatalogController
	Storefront routes

	Creating the Catalog Views
	Category views
	Catalog views
	Catalog View Helpers
	View Helper creation
	Creating the Catalog View Helpers

	Building and running the storefront
	Summary

	Chapter 6: Implementing User Accounts
	Creating the user model and resources
	User model
	User Model Resources

	Creating the Customer Controller
	Zend_Form
	Basic forms
	What is a Form?
	Creating a Form

	Customizing Zend_Form's output
	The Decorator pattern
	Zend_Form's Decorators
	Fixing the login forms HTML

	The User forms
	A Typical Form element
	Custom validators
	Base form decorators
	Specializing forms

	Creating the Customer Views
	Building the application
	Summary

	Chapter 7: The Shopping Cart
	Creating the Cart Model and Resources
	Cart Model
	Cart Model interfaces
	Cart Model implementation

	Cart Model Resources
	Shipping Model

	Creating the Cart Controller
	Creating the Cart Views and Forms
	Cart forms
	Add form
	Table form
	SF_Form_Abstract

	Cart View Helper
	Cart View scripts
	Cart view.phtml
	Cart _cart.phtml
	Layout main.phtml
	Catalog index.phtml
	Catalog view.phtml

	Summary

	Chapter 8: Authentication and Authorization
	Authentication versus Authorization
	Authentication with Zend_Auth
	Zend_Auth
	Authentication adapters
	Authentication results
	Identity persistence

	Authentication Service
	Customer Controller
	Authentication View Helper
	Other Authentication Service elements

	Authorization with Zend_Acl
	Zend_Acl introduction
	ACL in MVC
	Using a centralized global ACL
	Using module specific ACL's
	ACL in the Domain layer

	Model based ACL
	The Storefront ACL
	The Storefront roles
	The Storefront resources
	The new base model
	Securing the User Model

	Non-Model ACL
	Unit testing with ACL

	Summary

	Chapter 9: The Administration Area
	What is an administration area?
	Implementation options

	Implementing the storefront administration area
	Admin Route
	Admin context Front Controller plugin
	Admin layout
	Admin controller

	Catalog management
	Adding products
	Product add form
	Catalog Model
	Catalog Controller

	Securing the administration area
	ACL action helper
	Securing the Admin functions

	Catalog Model ACL

	Summary

	Chapter 10: Storefront Roundup
	Using multiple modules
	Setup
	Configuring Zend_Application
	Bootstrapping modules
	Module specific configuration
	Sharing common elements

	Services
	Services for cross module communication
	Services for extending model behavior

	Summary

	Chapter 11: Storefront Optimization
	General optimizations
	Opcode caching
	Path optimizations
	Requires and includes
	Standard caches
	Plugin loader cache
	Db table cache

	Dispatching optimizations
	Caching
	Zend_Cache
	Model data caching
	Basic class caching
	Model cache integration

	Summary

	Chapter 12: Testing the Storefront
	What is testing?
	PHPUnit and Zend_Test setup
	PHPUnit setup
	Zend_Test setup
	Handling the database

	Writing tests
	Running tests
	Adding tests to the build

	Testing the Customer Controller
	Running the Customer Controller test

	Common problems
	Summary

	Appendix: Installing Supporting Software
	Installing PHPUnit
	Installing Xdebug
	Windows installation
	Linux based installation
	OSX Installation
	Configuration

	Installing Apache Ant
	Windows installation
	Linux installation

	Index

